Publications

Link to my Google scholar page

------ 2020 -----

[45] Marsan, D. and Z. E. Ross (2020). Inverse migration of seismicity quiescence during the 2019 Ridgecrest sequence, J. Geophys. Res-Solid Earth, in review.

[44] Smith, J. D., Azizzadenesheli, K, and Ross, Z. E. (2020). EikoNet: Solving the Eikonal equation with Deep Neural Networks, IEEE Trans. Geosci. Rem. Sens., in review. [arXiv:2004.00361]

[43]Yeck, W. L., Patton, J. M., Ross, Z. E., Hayes, G. P., Guy, M. R., Ambruz, N. B., Shelly, D. R., Benz, H. M., and P. S. Earle (2020). Leveraging Deep Learning in Global 24/7 Real-Time Earthquake Monitoring at the National Earthquake Information Center, Seismol. Res. Lett, in review.

[42] Schulte-Pelkum, V., Ross, Z. E., Mueller, K., and Y. Ben-Zion (2020). Tectonic inheritance from deformation fabric in the brittle and ductile southern California crust, J. Geophys. Res-Solid Earth, in press.

[41] Plesch, A., Shaw, J. H., Ross, Z. E., and E. Hauksson (2020). Detailed 3D fault representations for the 2019 Ridgecrest earthquake sequence, Bull. Seismol. Soc. Am., in press.

[40] Zhang, X., Jia, Z., Ross, Z. E., and R. W. Clayton (2020). Extracting dispersion curves from ambient noise correlations using deep learning, IEEE Trans. Geosci. Rem. Sens., doi:10.1109/TGRS.2020.2992043, [arXiv:2002.02040]

[39] Ross, Z. E., Cochran, E. S., Trugman, D. T., and J. D. Smith (2020). 3D fault architecture controls the dynamism of earthquake swarms, Science, 368 (6497), doi: 10.1126/science.abb0779.

[38] Cochran, E. S., Skoumal, R. J., McPhillips, D., Ross, Z. E., and K. M. Keranen (2020). Activation of optimally- and unfavorably-oriented faults in a uniform local stress field during the 2011 Prague, Oklahoma, sequence, Geophys. J. Int, ggaa153, doi:10.1093/gji/ggaa153.

[37] Trugman, D. T., Ross, Z. E., and P. A. Johnson (2020). Imaging Stress and Faulting Complexity Through Earthquake Waveform Similarity, Geophys. Res. Lett., e2019GL085888, doi:10.1029/2019GL085888.

[36] Kanamori, H., Ross, Z. E., and L. Rivera (2020). Estimation of radiated energy using the KiK-net downhole records--Old method for modern data--, Geophys. J. Int, ggaa040, doi:10.1093/gji/ggaa040.

[35] Ross, Z. E., Trugman, D. T., Azizzadenesheli, K., and A. Anandkumar (2020). Directivity Modes of Earthquake Populations with Unsupervised Learning, J. Geophys. Res-Solid Earth, doi:10.1029/2019JB018299, [arXiv:1907.00496]

------ 2019 -----

[34] Ross, Z. E., Idini, B., Jia, Z., Stephenson, O. L., Zhong, M., Wang, X., Zhan, Z., Simons, M., Fielding, E. J., Yun, S.-H., Hauksson, E., Moore, A. W., Liu, Z., Jung, J (2019). Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence, Science, 366 (6463), 346-351, doi: 10.1126/science.aaz0109 (PDF here)

[33] Trugman, D. T. and Z. E. Ross (2019). Pervasive foreshock activity across southern California, Geophys. Res. Lett., 46 (15), 8772-8781, doi:10.1029/2019GL083725 [EarthArXiv:qenm2].

[32] Ross, Z. E., Trugman, D. T., Hauksson, E., and P. M. Shearer (2019). Searching for Hidden Earthquakes in Southern California, Science, 364 (6442), 767-771, doi: 10.1126/science.aaw6888.

[31] Hauksson, E., Ross, Z. E., and E. S. Cochran (2019). Slow-Growing and Extended-Duration Seismicity Swarms: Reactivating Joints or Foliations in the Cahuilla Valley Pluton, Central Peninsular Ranges, Southern California, J. Geophys. Res.-Solid Earth, doi.org/10.1029/2019JB017494

[30] Ross, Z. E., Yue, Y., Meier, M.-A., Hauksson, E., and T. H. Heaton (2019). PhaseLink: A Deep Learning Approach to Seismic Phase Association, J. Geophys. Res.-Solid Earth, 124 (1), 856-869, [arXiv:1809.02880].

------ 2018 ------

[29] Meier, M.-A., Ross, Z. E., Ramachandran, A., Balakrishna, A., Nair, S., Kundzicz, P., Li, Z., Hauksson, E., Andrews, J., and Y. Yue (2018). Reliable Real-time Seismic Signal/Noise Discrimination with Machine Learning, J. Geophys. Res-Solid Earth, doi:10.1029/2018JB016661.

[28] Kanamori, H. and Z. E. Ross (2018). Reviving mB. Geophys. J. Int., 216 (3), doi:10.1093/gji/ggy510.

[27] Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., and P. Gerstoft (2018). Machine learning in seismology —Turning data into insights. Seismol. Res. Lett., 90 (1), doi:10.1785/0220180259.

[26] Cochran, E. S., Ross, Z. E., Harrington, R. M., Dougherty, S. M., and J. L. Rubenstein (2018). Induced earthquake families reveal distinctive evolutionary patterns near disposal wells, J. Geophys. Res.-Solid Earth, 123, 8045–8055, doi:10.1029/2018JB016270.

[25] Ross, Z. E., Meier, M.-A., Hauksson, E., and T. H. Heaton (2018). Generalized Seismic Phase Detection with Deep Learning, Bull. Seismol. Soc. Am., 108 (5A), 2894-2901, doi: 10.1785/0120180080 [arXiv:1805.01075].

[24] Ross, Z. E., Meier, M.-A., and E. Hauksson (2018). P-wave arrival picking and first-motion polarity determination with deep learning, J. Geophys. Res.-Solid Earth, 123, doi: 10.1029/2017JB015251 [arXiv:1804.08804].

[23] Cheng, Y., Ross, Z. E., and Y. Ben-Zion (2018). Diverse volumetric faulting patterns in the San Jacinto fault zone, J. Geophys. Res.-Solid Earth, 123. doi: 10.1029/2017JB015408.

[22] Ross, Z. E., Kanamori, H., Hauksson, E., and N. Aso (2018). Dissipative intraplate faulting during the 2016 Mw 6.2 Tottori, Japan earthquake, J. Geophys. Res.-Solid Earth, doi: 10.1002/2017JB015077.

[21] Qin, L., Ben-Zion, Y., Qiu, H., Share, P.-E., Ross, Z. E., and F. L. Vernon (2018). Internal structure of the San Jacinto fault zone in the trifurcation area, southeast of Anza, California, from data of dense seismic arrays, Geophys. J. Int., 213(1), 98-114, doi:10.1093/gji/ggx540.

------ 2017 ------

[20] Yue, H., Ross, Z. E., Liang, C., Michel, S., Fattahi, H., Fielding, E., Moore, A., Liu, Z., and B. Jia (2017). The 2016 Kumamoto Mw = 7.0 earthquake: a significant event in a fault-volcano system, J. Geophys. Res.-Solid Earth, 122 (11), doi: 10.1002/2017JB014525.

[19] Allam, A. A., Schulte-Pelkum, V., Ben-Zion, Y., Tape, C., Ruppert, N., and Z. E. Ross (2017). Ten Kilometer Vertical Moho Offset and Shallow Velocity Contrast Along the Denali Fault from Double-difference Tomography, Receiver Functions, and Fault Zone Head Waves, Tectonophysics, 721, 59-69.

[18] Ross, Z. E., Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J.-P., and Y. Ben-Zion (2017). Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh, Geophys. Res. Lett., 44 (16), doi:10.1002/2017GL074634.

[17] Ross, Z. E., Kanamori, H., and E. Hauksson (2017). Anomalously large complete stress drop during the 2016 Mw 5.2 Borrego Springs earthquake inferred by waveform modeling and near-source aftershock deficit, Geophys. Res. Lett., 44 (12), doi: 10.1002/2017GL073338.

[16] Share, P.-E., Ben-Zion, Y., Ross, Z. E., Qiu, H., and F. L. Vernon (2017). Internal structure of the San Jacinto fault zone at Blackburn Saddle from seismic data of a dense linear array. Geophys. J. Int., doi: 10.1093/gji/ggx191.

[15] Qiu, H., Ben-Zion, Y., Ross, Z. E., Share, P.-E., and F. L. Vernon (2017). Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array. Geophys. J. Int., doi: 10.1093/gji/ggx096.

[14] Ross, Z. E., Hauksson, E., and Y. Ben-Zion (2017). Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Science Advances, 3 (3), e1601946, doi: 10.1126/sciadv.1601946.

[13] Hauksson, E., Meier, M.-A., Ross, Z. E., and L. M. Jones (2017). Evolution of seismicity near the southernmost terminus of the San Andreas Fault: Implications of recent earthquake clusters for earthquake risk in southern California. Geophys. Res. Lett., 44, doi: 10.1002/2016GL072026.

------ 2016 ------

[12] Ross, Z. E., Ben-Zion, Y., White, M. C., and F.L. Vernon (2016). Analysis of earthquake body wave spectra for potency and magnitude values: Implications for magnitude scaling relations. Geophys. J. Int., 10.1093/gji/ggw327.

[11] Ross, Z. E., White, M. C., Vernon, F. L., and Y. Ben-Zion (2016). An improved algorithm for real-time S-wave picking with application to the (augmented) ANZA network in southern California. Bull. Seismol. Soc. Am., 106 (5), doi: 10.1785/0120150230.

[10] Ross, Z. E. and Y. Ben-Zion (2016). Toward reliable automated estimates of earthquake source properties from body wave spectra. J. Geophys. Res.:Solid Earth, doi: 10.1002/2016JB013003.

[9] Okaya, D., Christensen, N., Ross, Z. E., and F. T. Wu (2016). Terrane-controlled crustal shear wave splitting in Taiwan. Geophys. Res. Lett., 43 (2), doi: 10.1002/2015GL066446

[8] Wu, F. T., Ross, Z. E., Okaya, D., Ben-Zion, Y., Wang, C.-Y., Kuo-Chen, H., and W.-T. Liang (2016). Dense Network, Intense Seismicity and Tectonics of Taiwan, Tectonophysics, 692 doi: 10.1016/j.tecto.2016.04.025.

------ 2015 ------

[7] Ross, Z. E. and Y. Ben-Zion (2015). An algorithm for automated identification of fault zone trapped waves. Geophys. J. Int., 202 (2), 933–942, doi:10.1093/gji/ggv197.

[6] Ben-Zion, Y., Vernon, F. L., Ozakin, Y., Zigone, D., Ross, Z. E., Meng, H., White, M., Reyes, J., Hollis, D., and M. Barklage (2015). Basic data features and results from a spatially-dense seismic array on the San Jacinto fault zone. Geophys. J. Int., 202 (1), 370-380, doi: 10.1093/gji/ggv142.

[5] Ross, Z. E., Y. Ben-Zion, and L. Zhu (2015). Isotropic source terms of San Jacinto fault zone earthquakes based on waveform inversions with a generalized CAP method. Geophys. J. Int., 200 (2), 1269-1280, doi: 10.1093/gji/ggu460

------ 2014 ------

[4] Ross, Z. E. and Y. Ben-Zion (2014). Automatic picking of direct P, S seismic phases and fault zone head waves. Geophys. J. Int., 199 (1): 368-381 doi: 10.1093/gji/ggu267.

[3] Ross, Z. E. and Y. Ben-Zion (2014). An Earthquake Detection Algorithm with Pseudo Probabilities of Multiple Indicators. Geophys. J. Int., 197 (1), 458–463, doi: 10.1093/gji/ggt516

------ 2013 ------

[2] Ross, Z. E. and Y. Ben-Zion (2013). Spatio-temporal variations of double-couple aftershock mechanisms and possible volumetric earthquake strain. J. Geophys. Res. - Solid Earth, 118 (5), doi: 10.1002/jgrb.50202.

------ 2011 ------

[1] Moss, R. E. S. and Z. E. Ross (2011). Probabilistic Fault Displacement Hazard Analysis for Reverse Faults. Bull. Seismol. Soc. Am., 101 (4), doi: 10.1785/0120100248.