Oxygenation of the ocean and sediments: Consequences for the seafloor carbonate factory

J.A. Higgins \(^a\), W.W. Fischer \(^b\), D.P. Schrag \(^a\)

\(^a\) Department of Earth and Planetary Science, Harvard University, 20 Oxford Street, Cambridge, MA 02138, United States
\(^b\) Division of Geological and Planetary Science, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, United States

A R T I C L E I N F O

Article history:
Received 22 September 2008
Received in revised form 21 March 2009
Accepted 23 March 2009
Available online 13 May 2009
Editor: M.L. Delaney

Keywords:
paleoceanography
carbonate sedimentology
aqueous geochemistry

A B S T R A C T

Observed changes in the source of CaCO₃ sediments since Archean time suggest a first order pattern of decreasing abundance of carbonate cements precipitated directly on the seafloor. We propose that the observed reduction in CaCO₃ precipitation on the seafloor is caused by a decrease in CaCO₃ saturation in sediments related to increased oxic cycling of organic carbon and a decline in the size of the marine DIC reservoir. Using a simple model of CaCO₃ saturation in the ocean, we show that changes in ocean-atmosphere redox and the size of the marine carbon reservoir strongly influence the ability of sediments to dissolve or precipitate CaCO₃. Oxic oceans like the modern are characterized by large gradients in CaCO₃ saturation. Calcium carbonate precipitates where CaCO₃ saturation is high (surface ocean) and dissolves where CaCO₃ saturation is low (sediments). In contrast, anoxic respiration of organic carbon and/or a large ocean carbon reservoir leads to a more homogeneous distribution of CaCO₃ saturation in the ocean and sediments. This effect suppresses CaCO₃ dissolution and promotes CaCO₃ precipitation on the seafloor. Our results suggest that the growth or contraction of gradients in CaCO₃ saturation in the ocean and sediments may explain the observed trends in carbonate precipitation on the seafloor in the Precambrian and changes in the global CaCO₃ cycle, such as the reappearance of seafloor precipitates and the drowning of carbonate platforms during episodes of widespread anoxia in the Phanerozoic marine basins. Our work provides novel insights into the consequences of the long-term geochemical evolution of the ocean and atmosphere for the global CaCO₃ cycle.

1. Introduction

The abundance of carbonate minerals in marine sedimentary rocks since 3.43 Ga (Allwood et al., 2006) suggests that precipitation of CaCO₃ has been an important sink of alkalinity and CO₂ over much of Earth history. Reconstructions of ancient and modern carbonate depositional systems indicate that the large-scale features of shallow-water carbonate sedimentation (paleogeography, platform architecture, and sequence stratigraphy; Grotzinger and James, 2000) have changed little over the last 3 billion yrs, suggesting similar controls on global patterns of CaCO₃ deposition (e.g. climate, weathering, sedimentary accommodation and accumulation). Importantly, the continuity of CaCO₃ deposition has been maintained in spite of large changes in the sources of carbonate sediment in shelf and slope environments over Earth history. During Archean and Paleoproterozoic time, significant CaCO₃ precipitation occurred directly on (and in) the seafloor as crystal fans, microdigitate stromatolites, and isopachous cements (Grotzinger and Reed, 1983; Kah and Grotzinger, 1992; Sumner and Grotzinger, 1996a, 2000; Grotzinger and James, 2000). Seafloor precipitates declined during the Meso- and Neoproterozoic in favor of carbonate muds (micrite) and trap-and-bind stromatolites (Grotzinger, 1990; Grotzinger and James, 2000). In latest Ediacaran seas, CaCO₃-producing eukaryotes evolved (Grotzinger et al., 1995). Since Cambrian–Ordovician time, carbonate sediments have been composed primarily of skeletal CaCO₃, with the exception of brief (millions of years) intervals associated with anoxia and mass extinction (Grotzinger and Knoll, 1995; Copper, 2002; Pruss et al., 2006; Knoll et al., 2007) where authigenic seafloor precipitates return as a conspicuous CaCO₃ sink.

In this paper we try to understand changes in the source and cycling of CaCO₃ in the ocean over Earth history in the context of changes in pCO₂, pO₂, and ocean chemistry. We do this by considering the processes that control the distribution of CaCO₃ saturation in seawater and sediments, defined as

\[\Omega = \frac{\gamma_{\text{Ca}^{2+}} \cdot \gamma_{\text{CO}_3^-}}{K_{\text{sp}}} \]

(1)

where \(\gamma_{\text{Ca}^{2+}}\) and \(\gamma_{\text{CO}_3^-}\) are the activities of Ca \(^{2+}\) and CO\(^3^-\) in seawater (Garrels et al., 1961) and \(K_{\text{sp}}\) is the thermodynamic solubility constant for CaCO₃ (calcite for simplicity). As long as \([\text{Ca}^{2+}] = [\text{CO}_3^-]\), \(\Omega\) is related to the parameter \(\Delta \text{CO}_3^-\) used in chemical oceanography in which \(\Omega = \Delta \text{CO}_3^- / \text{CO}_3^-\text{(sat)} + 1\) where \(\text{CO}_3^-\text{(sat)} = K_{\text{sp}} / \text{Ca}^{2+}\). In the following section, we examine the factors that control carbonate
saturation (Ω) in seawater on geologic timescales. We then develop a simple model of the global CaCO₃ cycle that takes into account the effect of gradients in Ω in the ocean and sediments and use the model to explore how secular changes in pO₂, pCO₂, and ocean chemistry affect the locus of precipitation and the rate of CaCO₃ dissolution. Our results indicate that under oxic conditions, like those found in modern ocean basins, the production and respiration of organic carbon creates large gradients in Ω between (and within) the water column and sediments, leading to a supersaturated surface ocean and undersaturation in sediments at all depths. In contrast, in an ocean that is more reducing and/or contains large amounts of dissolved inorganic carbon, a more homogeneous distribution of Ω in the ocean and sediments is expected. A more homogenous distribution of Ω will tend to suppress CaCO₃ dissolution and promote CaCO₃ precipitation on the seafloor. Finally, we discuss implications of the model for observed changes in the source and cycling of CaCO₃ over Earth history.

2. What controls the average value of Ω in seawater on geologic timescales?

Feedbacks between volcanic outgassing of CO₂, weathering of silicate minerals, and the burial of carbonates in the ocean are thought to control the global carbon cycle and climate on geologic timescales (Urey, 1952; Walker et al., 1981). The reaction of carbonic acid with silicate rocks adds alkalinity to seawater, shifting the partitioning of carbon species towards CO₃²⁻ and higher values of Ω. As long as silicate weathering continues to deliver alkalinity to the oceans, Ω will increase until carbonate minerals precipitate and the burial of CaCO₃ balances the flux of alkalinity from weathering (Walker et al., 1981). It is important to note that the balance between CaCO₃ burial and alkalinity inputs does not imply a particular value of Ω in the ocean. Rather, the average value of Ω in the ocean will reflect the dynamic balance between Ca²⁺, CO₃²⁻, and the solubility of CaCO₃ (K_sp):

\[
\frac{d\Omega}{dt} = \frac{d}{dt} \left(\frac{K_{sp} \cdot \gamma_{Ca} \cdot \gamma_{CO_3}^{2-}}{y_{Ca} \cdot y_{CO_3}^{2-}} \right).
\]

(2)

Eq. (2) can be simplified if we limit ourselves to short timescales (∼10⁴ yrs) and treat as constant those variables with characteristic timescales > ∼10⁴ yrs; these include: Ca²⁺ (Martin and Meybeck, 1979), ion activity coefficients (yCa and yCO₃), and the major element composition of seawater, especially Mg²⁺ and SO₄²⁻, both of which have residence times of > ∼10⁷ yrs (Garrels et al., 1961), and K_sp (Mg/Ca in seawater is thought to influence primary carbonate mineralogy; Stanley and Hardie, 1998). Shorter timescale changes in K_sp, for example due to variations in ocean temperature, are small and can be neglected. What is left is an equation for the average value of Ω in seawater over time that depends primarily on changes in CO₃²⁻:

The concentration of CO₃²⁻ in seawater depends, in turn, on the sum of dissolved inorganic carbon species (DIC = CO₂ + HCO₃⁻ + CO₃²⁻), the sum of dissolved species of weak acids/bases other than CO₂ (e.g. H₂S), and alkalinity (ALK = \sum strong base cations − \sum strong acid anions). Since the residence time carbon in the ocean is much longer than the timescales for adjustment in seawater alkalinity (∼10⁴ vs. ∼10⁷ yrs; Walker et al., 1981; Archer et al., 1997), Eq. (2) can be further reduced to a simple function of alkalinity:

\[
\frac{d\Omega}{dt} \propto \frac{dCO_3^{2-}}{dt} \propto \frac{dALK}{dt}.
\]

(3)

This result demonstrates that, on timescales of ∼10⁴ yrs the average value of Ω in seawater is strongly tied to the global alkalinity cycle. The global alkalinity cycle reflects the balance between alkalinity sources (weathering and sedimentary CaCO₃ dissolution) and sinks (CaCO₃ precipitation). Importantly, thermodynamic considerations and experimental studies of both biogenic CaCO₃ precipitation (Gattuso et al., 1998; Langdon et al., 2000; Riebesell et al., 2000; Broecker et al., 2001) and inorganic CaCO₃ precipitation/dissolution (Burton and Walter, 1987; Zhong and Mucci, 1989; Zuddas and Mucci, 1998; Morse et al., 2007) indicate that rates of precipitation and dissolution depend on the local value of Ω. Because precipitation and dissolution rates depend on local values of Ω, the distribution of Ω within the ocean and sediments will play an important role in determining where precipitation and dissolution are likely to occur and how the average value of Ω in the ocean is controlled on geologic timescales.

3. A simple model of the global CaCO₃ cycle

In this section, we develop a simple model of the global CaCO₃ cycle to understand how gradients in Ω within the ocean and sediments affect the locus of precipitation and importance of dissolution. Our model is based on a simple differential equation for alkalinity in seawater and includes weathering (W), CaCO₃ precipitation (P), and CaCO₃ dissolution (D):

\[
\frac{d\text{ALK}}{dt} = W - P + D.
\]

(4)

We use rate equations for CaCO₃ precipitation and dissolution that are similar to previous global modeling studies (Zeebe and Westbroek, 2003; Ridgwell, 2005) and based on inorganic precipitation/dissolution experiments (Morse, 1978; Mucci and Morse, 1983):

\[
P = k_p \cdot (\Omega_p - 1)^n_p
\]

(5a)

\[
D = k_d \cdot (1 - \Omega_d)^n_d
\]

(5b)

where Ω_p and Ω_d are the local values of CaCO₃ saturation, k_p and k_d are the reaction rate constants, and n_p and n_d are the reaction orders for CaCO₃ precipitation and dissolution, respectively. We assume all reactions are second-order (n = 2) for simplicity; different values do not significantly change our results. Because global rates of CaCO₃ precipitation and dissolution reflect contributions from a range of CaCO₃ sources (e.g. corals, algae, inorganic cements) and environments (e.g. continental shelf vs. deep sea), we treat CaCO₃ cycling in the ocean as the sum of individual precipitation/dissolution terms:

\[
\frac{d\text{ALK}}{dt} = W - \sum_{i=1}^{j} k_p(i) \cdot (\Omega_p(i) - 1)^2 + \sum_{i=1}^{\gamma} k_d(x) \cdot (1 - \Omega_d(x))^2.
\]

(6)

We simplify Eq. (6) in three ways. First, because precipitation and dissolution of CaCO₃ balance the flux of alkalinity through the ocean on ∼10⁴ yr timescales (Walker et al., 1981; Archer et al., 1997), we limit our model to these timescales and assume quasi-steady state (dALK/dt ≈ 0). Although model solutions are not valid on timescales longer than this, the model may be applied to any individual time interval of 10⁴–10⁵ yrs at any time in Earth history given appropriate boundary conditions (e.g. Ca²⁺, DIC, ALK).

Second, we group the precipitation/dissolution reactions in Eq. (6) into three terms that reflect the spatial distribution of these processes: 1) CaCO₃ precipitation in the surface ocean 2) CaCO₃ precipitation in sediments, and 3) CaCO₃ dissolution in sediments. CaCO₃ precipitation in the surface ocean refers to sources of CaCO₃ that use well-mixed surface ocean seawater (Ω_s). This includes the calcifying organisms responsible for the bulk of the biogenic CaCO₃ in the geologic record (e.g. corals, sponges, algae, and foraminifera) as well as inorganic precipitates (e.g. whittings (Morse, 2003)) that originate above the sediment–water interface. CaCO₃ precipitation in sediments denotes CaCO₃ (inorganic or biologically mediated) that precipitates below the sediment–water interface (Ω_b). Examples include crystal fans
and inorganic cements as well as CaCO₃ precipitated on organic surfaces (e.g. Braissant et al., 2007) at or below the sediment–water interface.

Finally, we relate local values of Ω (Ω_b and Ω_d) to each other by assuming that Ω_b is some fraction of Ω_d ($\Omega_b = \Omega_d \cdot (1 - \Delta \Omega^b)$) where $\Delta \Omega^b$ is the Ω_b-normalized gradient in Ω ($\Delta \Omega^b = \frac{\Omega_b - \Omega_d}{\Omega_d - \Omega_b}$) between the site of CaCO₃ precipitation and burial. Each unit of CaCO₃ produced will be associated with a unique value of $\Delta \Omega^b$ depending on the path it takes between precipitation and burial. For example, CaCO₃ exported to the deep sea will be associated with a larger value of $\Delta \Omega^b$ than CaCO₃ buried on continental shelves due to higher CaCO₃ solubility in the deep sea (Millero, 1976). Importantly, when calculating values of $\Delta \Omega^b$, we consider only the upper tens of centimeters of the sediment column, where the timescale for diffusion from the underlying seawater is fast. As our model represents the global CaCO₃ cycle, values of $\Delta \Omega^b$ represent the average gradient in Ω traversed by the global CaCO₃ flux (a detailed discussion of $\Delta \Omega^b$ can be found in Section 4). These simplifications reduce Eq. (6) to:

$$W = k_{ps} \left(\Omega_s - 1 \right)^2 + k_{ps} \cdot \left(\Omega_s - 1 - \Delta \Omega^b \right) - 1 \quad \text{if } \Omega_b \geq 1$$ \(7a\)

$$W = k_{ps} \left(\Omega_s - 1 \right)^2 - k_d \cdot \left(1 - \Omega_s - (1 - \Delta \Omega^b) \right)^2 \quad \text{if } \Omega_b < 1.$$ \(7b\)

Eqs. 7a and b can be solved for Ω_b (the value of Ω in the surface ocean) given values for weathering (W), k_{ps}, k_{ps}, k_d, and $\Delta \Omega^b$. The rate constants k_{ps}, k_{ps}, and k_d incorporate all of the factors that contribute to the kinetics of the global CaCO₃ cycle. For example, k_{ps} is a function of the calcifying organism (e.g. corals, algae, sponges) and all of the attendant biological and environmental factors that help determine its importance in the global CaCO₃ cycle (e.g. nutrients, temperature/salinity, continental shelf area, etc.). Similarly, k_{ps} and k_d will depend on the reaction rate constants for inorganic CaCO₃ precipitation/dissolution (Morse et al., 2007), the length scale of gradients in Ω in sediments (Martin and Sayles, 2006) as well as the mass and surface area of CaCO₃ available for dissolution or crystal growth. k_{ps} will also depend on catalytic surfaces that promote CaCO₃ nucleation (Braissant et al., 2007) as well as dissolved ions other than Ca$^{2+}$ that inhibit CaCO₃ precipitation by changing mineral surface and/or solution chemistry (Morse et al., 2007 and references therein). Given the variety of factors that influence the kinetics of CaCO₃ precipitation and dissolution and the likelihood that these factors have changed significantly over Earth history, we explore the sensitivity of our model to a range of rate constants.

4. $\Delta \Omega^b$: the distribution of carbonate mineral saturation in the ocean and sediments

In this section, we examine the processes that control the distribution of Ω in the ocean and sediments to understand how $\Delta \Omega^b$ has changed over Earth history. As long as $[\text{Ca}^{2+}] > [\text{CO}_3^{2-}]$ ($\frac{\text{Ca}^{2+}}{\text{CO}_3^{2-}} = 25$ in the modern ocean), the distribution of Ω in the ocean and sediments will depend largely on gradients in CO_3^{2-} and changes in CaCO₃ solubility associated with variations in temperature and pressure. Gradients in CO_3^{2-} are produced by any process that changes the distribution of DIC and/or alkalinity in the ocean and sediments. The most important of these is the production and respiration of organic carbon (i.e. the biological pump), a process that transports large amounts of CO₂ and alkalinity, if respiration involves S, N, Fe, or Mn reduction, from the surface ocean to the water column and sediments.

In addition to the distribution of DIC and alkalinity, gradients in Ω in the ocean and sediments will also depend on the size of the DIC reservoir (e.g. Arp, 2001). For a given gradient in DIC, the associated change in Ω will be much smaller if the size of the marine DIC reservoir is large, whereas large gradients in Ω are possible if the DIC reservoir is small (Figs. 1 and 2C–D). The size of the marine DIC reservoir depends on the total amount of CO₂ in the atmosphere system and how it is partitioned between the ocean and atmosphere. At constant pCO₂, the DIC reservoir will be large if seawater alkalinity is high. Similarly, at constant seawater alkalinity, the DIC reservoir will be large if pCO₂ is high.

4.1. Gradients in Ω due to temperature and pressure

CaCO₃ becomes increasingly soluble at high pressures. As a result, values of Ω in seawater will tend to decrease with depth. Given the temperature and pressure dependence of CaCO₃ solubility and carbonate equilibria (Millero, 1995) and assuming modern tropical surface ocean carbonate chemistry (DIC=2.1 mM, alkalinity=2.3 mM, $[\text{Ca}^{2+}] = 10 \text{ mM}$, $T=25 \degree \text{C}$, $S=35 \text{ psu}$) Ω decreases by 9%, 32%, and 53% between the surface ocean and 1, 3, and 5 kilometers water depth, respectively (Fig. 2A). The effect of temperature is small — $\Delta \Omega$ decreases by ~5% for a 25 \degreeC decrease in temperature.

4.2. Gradients in Ω due to carbon fixation/respiration

Changes in the distribution of CO₂ in the ocean and sediments associated with the production, transport, and remineralization of organic carbon can generate large gradients in Ω over a wide-range of length scales, from microns surrounding microbial filaments in surface sediments to thousands of meters in the water column. Although the effect of organic carbon cycling on Ω does not depend strongly on the length scale, different processes maintain gradients in Ω in the water column and sediments. In the water column, large-scale gradients in Ω are set by the flux of organic carbon out of the surface ocean (i.e. the strength of the biological pump). The strength of the biological pump is controlled by changes in and interactions between the global nutrient (NP) inventory, the burial of organic carbon and nutrients, and ocean mixing (Broecker and Peng, 1982; Van Cappellen and Ingall, 1996). Although there are exceptions (see Section 4.2.2.), a strong biological pump will be associated with large gradients in Ω whereas small gradients in Ω in the water column are expected when the biological pump is weak. In contrast to the water column, gradients in Ω in sedimentary pore waters reflect the balance between diffusion-limited transport of dissolved species (augmented by bioturbation at shallow depths; (Boudreau, 1987)) and the rate and distribution of organic carbon oxidation. Importantly, the slow rate of transport by diffusion (when compared to mixing in the water column) enables the development of large gradients in Ω within a short distance of the
sediment–water interface (millimeters to centimeters; [Walter and Burton, 1990; Boudreau and Canfield, 1993; Ku et al., 1999]).

Gradients in Ω associated with organic carbon cycling also depend on the identity of the redox pair because the reduction/oxidation of electron donors/acceptors other that O_2/H$_2$O cause changes in alkalinity (e.g. $\text{SO}_4^{2-}/\text{H}_2\text{S}$, $\text{NO}_2^-/\text{NH}_4^+$, Fe(OH)$_3$/Fe$^{2+}$). Although there are a number of redox partners for organic carbon fixation that may have been important on the early Earth (e.g. Fe$^{2+}$ [Walker, 1987]), for simplicity we consider only O_2/H$_2$O. Taking into account changes in alkalinity associated with anaerobic pathways of carbon fixation does not significantly change the results presented here. The reason for this is that high concentrations of atmospheric CO$_2$ and a large ocean DIC reservoir in Archean and Paleoproterozoic time would have largely suppressed gradients in Ω associated with organic carbon cycling, regardless of the pathway of carbon fixation/respiration (see Section 6.1). Because the oxygen content of bottom waters and sediments has likely changed significantly since Archean/Proterozoic time (e.g. Canfield, 1998) we do consider the effect of organic carbon respiration under oxid and anoxic conditions.

4.2.1. $\Delta \Omega^{*}$ and oxic respiration

When $p\text{O}_2$ is high and O_2 is the dominant electron acceptor for respiration, organic carbon cycling leads to large negative gradients in Ω between the site of organic carbon production (surface ocean) and remineralization (water column and sediments). For example, a DIC gradient due to oxic respiration of 250 μM, comparable to the vertical gradient observed in the modern ocean ([Broecker and Peng, 1982]), will be associated with an 80% decrease in Ω between the site of production and respiration (Fig. 2). Similarly, oxic respiration of organic carbon in sediments leads to values of Ω in near-surface sedimentary pore waters that are much lower than those in the overlying seawater. When sufficient organic carbon is present, for example in sediments on the continental shelf, slope, and rise, O_2 consumption in sediments is complete within a few millimeters to centimeters of the sediment–water interface ([Cai and Sayles, 1996]), and gradients in Ω in pore waters depend primarily on O_2 in bottom waters (see Fig. 2:C). O_2 may also be consumed during the oxidation of inorganic reduced species produced during anoxic remineralization (e.g. H$_2$S [Jorgensen and Revsbech, 1983]). The magnitude in the associated drop in Ω is slightly larger and occurs over an even shorter length scale compared to the drop in Ω due to O_2 consumption by oxic respiration (Boudreau and Canfield, 1993). Regardless of the identity of the O_2 sink, the large drop in Ω associated with O_2 consumption over such short length scales in sediments leads to undersaturation and CaCO$_3$ dissolution, even when the overlying seawater is characterized by high values of Ω ([Walter and Burton, 1990; Tribble, 1993; Ku et al., 1999]).

4.2.2. $\Delta \Omega^{*}$ and anoxic respiration

If $p\text{O}_2$ is low and/or the flux of organic carbon out of the surface ocean outstrips the supply of O_2 to the water column and sediments, a significant fraction of the exported organic carbon may be respired with electron acceptors other than O_2 (e.g. SO_4^{2-}, Fe(III), Mn(IV), NO$_3^-$). Anoxic respiration will have two effects on the distribution of Ω in the ocean and sediments. First, oceans characterized by persistent and long-term anoxia ($>10^8$ yrs) due to low $p\text{O}_2$ will be associated with a weak biological pump and small gradients in Ω (small $\Delta \Omega^{*}$) in the water column. Records of the carbon isotopic composition of CaCO$_3$ and organic carbon suggest that, on timescales of 10^8 yrs, the rates of organic carbon and CaCO$_3$ burial have not varied by orders of magnitude since Archean time ([Schidlowski et al., 1983; Holland, 2002; Fischer et al., 2009]). As a result, the strength of the biological pump on these timescales will primarily reflect the efficiency of organic carbon burial. Because organic carbon burial is more efficient
under anoxic conditions (Hartnett et al., 1998; Hedges et al., 1999), the increasing oxygenation of the ocean and sediments since Archean time should be accompanied by a strengthening of the biological pump. This need not be true for the short-lived (10^6–10^7 yrs) episodes of widespread anoxia associated with high pO2 in the Phanerozoic (e.g. Cretaceous ocean anoxic events), where anoxia is thought to be, in part, a consequence of enhanced biological productivity (Sarmiento et al., 1988; Hotinski et al., 2000).

Second, anoxic remineralization of organic carbon may increase alkalinity, leading to higher values of Δ compared to respiration with O2 (Fig. 2.E–F). As a result, anoxic respiration will be associated with a more homogeneous distribution of Δ in the water column and sediments (smaller $\Delta \Omega^p$). For example, assuming a ΔDIC of 250 μM, we calculate a decrease in Δ of 40% when organic carbon is respired by SO4^2- reduction, compared to a drop of 80% when respiration involves O2 (Fig. 2:C,E). Reactions involving the products of anoxic remineralization (e.g. Fe^{2+} and H2S) can also lead to changes in Δ. The most important of these is the precipitation of sulfide-bearing minerals, which increases Δ by removing H2S (Fig. 2:F; Ben-Yaakov, 1973).

5. $\Delta \Omega^p$ and the global CaCO3 cycle

In summary, three factors control the distribution of Δ in the ocean and sediments: the size of the ocean DIC reservoir, the pressure-dependent solubility of CaCO3, and the intensity and pathway of organic carbon cycling. Large gradients in Δ (e.g. values of $\Delta \Omega^p > 80\%$) arise from a combination of high pO2, a strong biological pump, oxic respiration of organic carbon, and efficient CaCO3 transport to the deep sea. Similarly, small gradients in Δ (e.g. values of $\Delta \Omega^p < 40\%$) result from either anoxic respiration of organic carbon, a weak biological pump, or a large marine DIC reservoir. Using these two cases (large and small $\Delta \Omega^p$) as end members, we return to our model of the global CaCO3 cycle (Eq. 7a–b) to consider what different values of $\Delta \Omega^p$ mean for the cycling of CaCO3 in the ocean and sediments.

5.1. The global CaCO3 cycle when $\Delta \Omega^p$ is large

Large values of $\Delta \Omega^p$ promote CaCO3 dissolution. Therefore, CaCO3 dissolution will be an important process in the global CaCO3 cycle when pO2 is high, the biological pump is strong, and organic carbon is respired with O2 (Fig. 3a,b). For a given value of $\Delta \Omega^p$, the amount of CaCO3 dissolved depends on the kinetic rate constants (k_{ps} and k_d). High values of k_{ps} and/or k_d will be associated with high rates of CaCO3 dissolution whereas low rates of dissolution require small k_{ps} and k_d. Large $\Delta \Omega^p$ will also result in higher values of CaCO3 saturation in the surface ocean ($\Delta \Omega^p$) for all but highest values of k_{ps} and/or lowest values of k_d. Because the long-term rate of CaCO3 burial is fixed by the alkalinity input from weathering, increased dissolution must be accompanied by higher rates of CaCO3 precipitation and hence higher values of Δ in the surface ocean.

The global CaCO3 cycle in the modern ocean is characterized by high values of $\Delta \Omega^p$ (~80–95%), a result of oxic respiration and transport of CaCO3 to the deep sea (Fig. 2:B). Observations of corrosive bottom waters (Berner, 1965; Li et al., 1969) and measurements of excess Ca^{2+} and alkalinity fluxes out of sediments indicate CaCO3 undersaturation and dissolution in both shallow (Walter and Burton, 1990; Ku et al., 1999) and deep-sea (Archer et al., 1989) sediments. Estimates of CaCO3 cycling in the modern ocean suggest that as much as 60–80% of annual CaCO3 production is re-dissolved in the water column and sediments (Archer, 1996; Milliman and Droxler, 1996). Finally, the modern surface ocean is highly oversaturated with respect to CaCO3 ($\Omega = 5$–6; (Li et al., 1969)). In the context of our model, these observations require a value of k_d that is ~50 times larger than k_{ps}. This result is qualitatively consistent with arguments that changes in the rate of CaCO3 dissolution is the dominant mechanism by which the balance between weathering and CaCO3 burial is maintained on 10^4 yr timescales in the modern ocean (carbonate compensation sensu Broecker and Peng, 1982).

5.2. The global CaCO3 cycle when $\Delta \Omega^p$ is small

When $\Delta \Omega^p$ is small, sediments tend to be oversaturated and may precipitate CaCO3 (Fig. 3c). The partitioning of CaCO3 precipitation between surface ocean and sediments depends on their respective kinetic rate constants (k_{ps} and k_{ps}). Because CaCO3 dissolution is suppressed when $\Delta \Omega^p$ is small, CaCO3 saturation in the surface ocean will depend only on the rate of CaCO3 precipitation. Unfortunately, the
kinetics of CaCO₃ precipitation on the seafloor are not well understood. As a result, it is difficult to predict what value of Ω in the surface ocean will be associated with a CaCO₃ cycle dominated by precipitation on the seafloor.

The lack of significant inorganic precipitation in sediments overlain by supersaturated seawater in the modern ocean (Morse and Mucci, 1984) is frequently cited as evidence for slow precipitation kinetics. However, given that shallow-water sediments in the modern ocean are corrosive to CaCO₃ within a short distance of the sediment-water interface (Walter and Burton, 1990; Ku et al., 1999), the lack of significant inorganic precipitation in CaCO₃ sediments in the modern ocean may simply reflect large gradients in Ω associated with intense toxic cycling of organic carbon. Slow precipitation kinetics and high values of Ω in the surface ocean are also often inferred for Archean and Proterozoic seafloor precipitates based on hypotheses of kinetic inhibition by ions soluble in anoxic seawater (Sumner and Grotzinger, 1996b) and comparisons with modern sedimentary precipitates (Kepe and Kaszmiczak, 1990; Kempe et al., 1991). Although the composition of Precambrian seawater did include ions (e.g. Fe²⁺) that have been shown to inhibit CaCO₃ precipitation (Meyer, 1984; Katz et al., 1993), the degree of inhibition depends on multiple factors (e.g. the abundance of precipitation nuclei) such that a unique precipitation rate cannot be determined from the presence of inhibitors alone. In addition, with respect to modern analogues of Precambrian seafloor precipitates, relationships between the value of Ω in the bulk solution and precipitation rates are complicated by the gradients in Ω associated with cycling of organic carbon discussed above and the fact that the value of CaCO₃ saturation in any lake or ocean reflects a dynamic balance between alkalinity inputs, precipitation, and dissolution (if it occurs). Thus, although most studies argue that the kinetics of CaCO₃ precipitation on the seafloor are slow and should be associated with extremely high values of Ω in the surface ocean, there is a large degree of uncertainty and lower values of Ω (perhaps even lower than the modern surface ocean) should also be considered. Regardless of the particular value of Ω associated with an active seafloor carbonate factory, the key point is that oceans characterized by weak gradients in Ω in the ocean and sediments (small $\Delta\Omega^*$) favor CaCO₃ preservation and precipitation on the seafloor.

6. Implications for the co-evolution of ocean redox, pCO₂, and the global CaCO₃ cycle over earth history

Our model of the global CaCO₃ cycle suggests that gradients in Ω in the ocean and sediments exert a strong control over where CaCO₃ is precipitated and how much of it is re-dissolved. We apply these concepts to periods in Earth history characterized by large changes in reduction–oxidation potential of the ocean–atmosphere system and/or the size of the marine DIC reservoir. These include the Proterozoic Eon over which O₂ is hypothesized to have increased from a trace gas to a major component of Earth’s atmosphere and pCO₂ declined due to increasing solar luminosity, as well as episodes of short-lived (10⁶–10⁷ yrs), but widespread anoxia in the Phanerozoic ocean basins.

6.1. Secular trends in CaCO₃ precipitation on the seafloor in the Proterozoic

Studies of Precambrian carbonate rocks indicate a decline in the importance of CaCO₃ precipitation directly on the seafloor in continental shelf and slope environments during the Proterozoic Eon (Grotzinger, 1990; Grotzinger and Knoll, 1999). Archean and early Proterozoic carbonates facies are characterized by abundant authigenic CaCO₃ precipitation of both inorganic and microbial origin. They are similar in many respects to Phanerozoic marine cements with the exception that they do not fill cavity voids but rather precipitate directly as sedimentary beds on the seafloor (Grotzinger and Reed, 1983; Grotzinger and James, 2000). Examples include upward-divergent aragonite crystal fans (Sumner and Grotzinger, 2000), microdigitate stromatolites (Grotzinger and Reed, 1983), and isopachously encrusting layers of herringbone calcite. Abundant cementation, both locally and within individual stromatolitic laminae, together with CaCO₃ sediment mass-balance arguments suggest that in situ CaCO₃ precipitation was also important in Proterozoic stromatolites (Knoll and Semikhatov, 1998; Pope and Grotzinger, 2000). With the exception of Cryogenian and basal Ediacaran ‘cap carbonates’, both inorganic and microbial authigenic seafloor precipitates are less common in Meso and Neoproterozoic carbonate rocks. Instead, carbonate sediments at this time suggest an increase in the abundance of carbonate mud (micrite) and stromatolite accretion dominated by sediment trapping and binding (Grotzinger and Knoll, 1999). Hypotheses for the observed secular change in CaCO₃ facies in the Proterozoic attribute the decline in the abundance of in situ CaCO₃ precipitation on the seafloor to a lowering of CaCO₃ saturation in seawater (Grotzinger, 1990; Grotzinger and James, 2000). Explanations for the drop in CaCO₃ saturation include the long-term transfer of inorganic carbon from the ocean and atmosphere to the continents associated with the formation of large, stable continents in the early Proterozoic (2.5 to 2.0 Ga) and/or declining concentrations of ions in anoxic seawater that inhibit CaCO₃ precipitation (Grotzinger, 1990; Grotzinger and James, 2000).

Our results cast this pattern in a different light. We propose that, the observed decline in authigenic CaCO₃ precipitation on the seafloor in the Proterozoic may reflect an increase in $\Delta\Omega^*$ between the surface ocean and sediments associated with rising atmospheric O₂ (Canfield, 1998) and a shrinking ocean–atmosphere DIC reservoir (Bartley and Kah, 2004). Although the evolution of atmospheric O₂ throughout Proterozoic time is not well constrained, an increase from ≤1 ppm at the Archean–Proterozoic boundary tens of thousands of ppm by the early Cambrian is consistent with multiple sulfur isotope measurements (Farquhar et al., 2000; Pavlov and Kasting, 2002) and the diffusive metabolic requirements of simple metazoans (Berkner and Marshall, 1965), respectively. As a result, changes in organic carbon cycling over Proterozoic time were likely characterized by an increase in respiration rates and a strengthening of the biological pump. In addition, decreasing solar luminosity over this eon (Sagan and Mullen, 1972) and the associated decline in atmospheric CO₂ would have significantly reduced the size of the ocean DIC reservoir, though this effect may have been offset somewhat by higher concentrations of Ca²⁺ in seawater. Taking into account changes in O₂ and DIC, we estimate an increase in $\Delta\Omega^*$ from...
Precipitates following an episode of global glacial invoke high degrees of
James et al., 2001). Current explanations for the return of sea
meters to decameters (Peryt et al., 1990; Grotzinger and Knoll, 1995;
including aggregates of primary aragonite fans, ranging in size from
decades to centuries (Schlanger, 1981 et al., 2000). In contrast to anoxia in Precambrian oceans, which
persisted for hundreds of millions to billions of years, anoxic events in
Episodes of anoxia in Phanerozoic ocean basins are distinct from
those in the Precambrian in that they are less frequent, short-lived, and
occur in spite of high concentrations of atmospheric O2 (Arthur and Schlanger, 1979). Under these conditions, anoxia must result from
a strengthening of the biological pump relative to the delivery of O2 to
the water column and sediments (Sarmiento et al., 1988; Hotinski
et al., 2000). In contrast to previous hypotheses where the decline in sea
precipitation is attributed to a whole ocean decrease in CaCO3 saturation
(Grotzinger, 1990), our analysis suggests that the decline in ΔΩ occurred
primarily in sedimentary pore fluids. A corollary is that CaCO3 saturation in the
surface ocean may have actually increased through Proterozoic time.

The trend of declining precipitation on the seafloor during the
Proterozoic was briefly interrupted in the aftermath of Neoproterozoic
pan-glacial events (Hoffman et al., 1998). The limestone member of cap
carbonate sequences that directly overlies most Neoproterozoic glacial
deposits contain, in many instances, abundant seafloor precipitates including aggregates of primary aragonite fans, ranging in size from
meters to decameters (Peryt et al., 1990; Grotzinger and Knoll, 1995;
James et al., 2001). Current explanations for the return of seafloor
precipitates following an episode of global glacial invoke high degrees of
CaCO3 saturation and diffusion-limited crystal growth in a post-glacial
super-greenhouse (Hoffman et al., 1998; Higgins and Schrag, 2003;
Shields, 2005). An alternative possibility is that the recurrence of seafloor precipitation is due to a decrease in ΔΩ⁎ associated with the
extremely high concentrations of DIC expected (15–20 mM; Higgins and
Schrag, 2003) for an ocean equilibrated with CaCO3 sediments and an
atmosphere containing ~0.1 bar CO2 (Fig. 4:B). At such high concentrations
of ocean DIC, ΔΩ⁎ will be small and precipitation on the seafloor
favored irrespective of the oxidant or intensity of organic carbon cycling.

6.2. Implications for CaCO3 cycling and ocean anoxia in the Phanerozoic

Episodes of anoxia in Phanerozoic ocean basins are distinct from
drowning of shallow-water carbonate platforms (Schlager, 1981). Second,
if the drop in ΔΩ⁎ is sufficiently large, authigenic CaCO3 precipitation on the
seafloor may occur (Fig. 5:B). Importantly, on long timescales (> 10⁶ yr), the increase in CaCO3 precipitation on the seafloor must come at the expense of CaCO3 precipitation in the surface ocean. This result is consistent with observations of a decline in skeletal CaCO3 production and reappearance of Precambrian seafloor precipitates during periods of widespread anoxia the Phanerozoic (Grotzinger and Knoll, 1995; Copper, 2002; Kiessling et al., 2002; Pruss et al., 2006). A numerical study of oxic–
anoxic transitions in a global ocean circulation–carbon cycle model (e.g. Archer and Maier Reimer, 1994) with detailed stratigraphic, sedimento-
logical, and geochemical reconstructions of the changes in CaCO3 cycling during anoxic events could test this aspect of our hypothesis.

7. Conclusions

Since Archean time, the concentration of atmospheric O2 has increased by five orders of magnitude. At the same time, concentrations of atmospheric CO2 and seawater DIC have declined by factors of 100–1000 and 5–10, respectively. We argue that these changes have had a profound effect on the global CaCO3 cycle by enabling the development of large gradients in CaCO3 saturation between the surface seawater and sedimentary pore fluids. Together with the evolution of CaCO3 biomineralization, increasing oxic cycling of organic carbon and a
reduction in atmospheric CO2 over Earth history has led to a shift in the
role of sediments in the global CaCO3 cycle by a site of CaCO3
precipitation to one of dissolution. Secular trends in CaCO3 precipitation on the
seafloor in the Precambrian and changes in the global CaCO3 cycle (e.g. the return of abundant CaCO3 precipitation on the seafloor and/or
drowning of carbonate platforms) during episodes of widespread anoxia in
Phanerozoic ocean basins may represent the response of the global
CaCO₃ cycle to the growth or contraction of gradients in CaCO₃ saturation in the ocean and sediments associated with changes in ocean-atmosphere redox and DIC.

Acknowledgements

We would especially like to thank Paul Hoffman and Sara Pruss for insightful discussions and encouragement. We would also like to thank Adam Maloof and an anonymous reviewer for detailed comments on the manuscript. This work was supported by the National Defense Science and Engineering Graduate (NDSEG) Fellowship and NSF Graduate Research Fellowship Programs.

References

