Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa

1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
2 Department of Geology, University of Johannesburg, Johannesburg, South Africa
3 School of Earth Sciences, James Cook University, Townsville, Australia
4 Department of Geology, University of Johannesburg, Johannesburg, South Africa
5 Environmental Isotope Group, iThemba Labs Gauteng, Wits, South Africa
6 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA

Abstract

Few existing studies illuminate the operation of the carbon cycle before the rise of atmospheric oxygen circa 2400 million years ago. Stable carbon isotopic measurements of shallow stromatolitic carbonates (~0‰ VPDB) and basin carbonates (~6‰) in iron formation have been used to infer a strong isotopic depth gradient in Archean ocean basins. From new diamond drill cores obtained by the Agouron Drilling Project from the Griqualand West structural basin in the Northern Cape Province, South Africa, we present δ13C data from carbonates and organic matter that offer fresh insights into the Late Archean carbon cycle. Three drill cores cover the development, progradation, and ultimate demise (by drowning) of the Campbellrand carbonate platform (ca. 2590–2500 Ma); one captures the platform top shallow marine and intertidal paleoenvironments, the other two run through slope and basinal sections deposited adjacent to the platform margin, increasing in water depth (likely to >1 km). Both shallow and deep-water carbonates precipitated on the seafloor consistently show δ13C values around ~0‰, incompatible with a strong Late Archean isotopic depth gradient. A mathematical model suggests that these isotopic data are consistent with a reduced biological pump, increased dissolved inorganic carbon in seawater due to higher atmospheric P(O2), or both. Certain horizons do show distinct isotopic variability. Such areas are commonly shaly, and they tend to be organic and/or iron rich. Strong C-isotopic variations occur on a cm scale and most likely stem from diagenetic remineralization of organic matter. In sediment-starved areas where iron formation developed, siderite tends to be 13C-depleted, sometimes by as much as ~14‰. These observations suggest a carbon cycle in which iron respiration played a conspicuous role. Carbon isotope ratios from organic matter in shales are commonly >1‰ lighter than stratigraphically younger carbonate carbonates, but there is no clear water depth trend in the organic carbon isotopic data. Taken as a whole, the δ13C of organic matter can be explained by several non-unique sets of processes, including different autotrophic mechanisms of carbon fixation, heterotrophic recycling (including fermentation and methanotrophy), and post-depositional diagenesis. The most striking feature is the occurrence of organic δ13C values < ~40‰, a feature that appears to be commonplace in Late Archean successions. Framed in the context of carbon cycle isotopic mass balance, both organic and carbonate carbon isotopic data suggest that the proportion of carbon buried as organic matter was not radically different before the appearance of free environmental oxygen.

1. Introduction

The initial rise of atmospheric O2 constitutes one of the most biologically significant environmental transitions in Earth history, and derives, ultimately, from a biological innovation, the evolution of oxygenic photosynthesis. The fate of photosynthetic O2 (rapid remineralization or accumulation in the oceans and atmosphere), however, is linked to the full range of carbon cycle processes via the burial flux of organic matter. Based on observations of carbon
isotopic data, previous work suggested that the Archean carbon cycle operated in a manner different from younger times in Earth history, with little or no burial of organic carbon. To test these hypotheses, we employed a combination of theory, new geologic observations, and new isotopic data, that enable us to assay critical processes in the Late Archean carbon cycle, just prior to the rise of environmental O₂.

The carbon cycle functions as a central hub that connects all biogeochemical cycles operating at the Earth’s surface. Over sufficiently long time scales (>250 kyears) carbon emitted from the solid Earth has two well-known sedimentary sinks: organic matter and carbonate salts (Ebelmen, 1845). A large kinetic isotope fractionation occurs when carbon is fixed into organic matter (Nier and Gulbrandsen, 1939; Urey, 1947; Farquhar and Ehleringer, 1989). As a result, the stable carbon isotopic composition of organic matter and carbonates changes sympathetically with the proportional amounts of carbon removed to these two sinks. This is fortunate because rather than attempting to measure the absolute amount of carbonate and organic carbon buried over a given time interval (extremely challenging, given the strong preservational biases inherent to the geologic record), we can instead estimate the fraction of carbon buried as organic matter relative to total carbon burial by measuring the isotopic composition of both carbonates (δ¹³C_{carb}) and organic matter (δ¹³C_{org}) from selected, well-preserved stratigraphic successions (Wickman, 1956) (Eq. (1)):

\[
\text{f}_{\text{org}} = \frac{\delta^{13}C_{\text{carb}} - \delta^{13}C_{\text{input}}}{\delta^{13}C_{\text{carb}} - \delta^{13}C_{\text{org}}}
\]

(1)

This parameter, referred to here as f_{org}, represents the proximal interface between acid–base and reduction–oxidation processes occurring on the fluid Earth and offers a readily attainable measure of the state of the global carbon cycle at the geological instant of sedimentation.

The accumulation of oxidized species in the oceans and atmosphere ultimately derives from organic carbon that escapes remineralization by means of sedimentary burial (shifting the Eq. (2) equilibrium to the right):

\[
\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{CH}_2\text{O} + \text{O}_2
\]

(2)

Although few studies detail carbon cycle mechanisms during Archean time, available data considered in the context of isotopic mass balance with known inputs (Schidlowski et al., 1975; Beukes et al., 1990; Strauss et al., 1992a; Hayes, 1994; Shields and Veizer, 2002; Eq. (1)) suggest that the proportion of total carbon buried as organic matter has been more or less consistent throughout Earth history, both before and after the rise of atmospheric O₂ [2.45–2.32 billion years before present (Ga); Farquhar et al., 2000; Wing et al., 2002; Bekker et al., 2004]. If this is even broadly correct, the carbon cycle must have delivered oxidized equivalents to the oceans and atmosphere throughout much of its history (e.g. Kump et al., 2001; Holland, 2002). Estimates of organic carbon burial (and thus oxidant production), however, are only as accurate as the models used to generate them. Bjerrum and Canfield (2004) reexamined the burial history of organic matter with a more detailed isotopic mass balance model that included a third carbon sink, precipitation of carbonate salts within seafloor basals during submarine weathering (Eq. (3)):

\[
\text{f}_{\text{org}} = \frac{\delta^{13}C_{\text{carb}} - \delta^{13}C_{\text{input}} + \lambda \Delta t}{\delta^{13}C_{\text{carb}} - \delta^{13}C_{\text{org}} + \lambda \Delta t}
\]

(3)

In their formulation, λ depicts the fraction of inorganic carbon removed by basalt carbonization, and Δt represents the difference in isotopic composition between carbonates associated with ocean floor basals and carbonates precipitated in shallow water. As λ becomes negligible, or if the isotopic composition of basalt carbonates approaches δ¹³C_{carb}, Eq. (3) approximates the standard model (Eq. (1)). Although difficult to measure from the geologic record, the two degrees of freedom added by Bjerrum and Canfield (2004) were justified indirectly on the basis of geological observations. Deposition of carbonate minerals within the upper oceanic crust is currently recognized as an important carbon sink (Staudigel et al., 1989; Alt and Teagle, 1999), and was likely significant during Archean time (Walker, 1990; Sleep and Zahnle, 2001). This sink takes on special importance because a number of previous studies had recognized a large difference in carbon isotope ratios between shallow water stromatolitic dolomites (δ¹³C_{carb} ~ -0.6‰ VPDB) and coeval siderites within deep-water iron formation (δ¹³C_{carb} ~ -5 to -7‰) in Late Archean to Paleoproterozoic successions (Becker and Clayton, 1972; Perry and Tan, 1972; Beukes et al., 1990; Kaufman et al., 1990; Winter and Knauth, 1992; Ohmoto et al., 2004); the observed difference was attributed to a strong isotopic gradient within the water column. These observations fueled Bjerrum and Canfield’s hypothesis that during Archean time, carbonate formed during submarine basalt alteration would have been depleted in ¹³C, providing an important but previously unrecognized sink for isotopically light carbon that causes the standard model (Eq. (1)) to overestimate the proportion of carbon buried as organic matter. Bjerrum and Canfield’s (2004) revised estimates of f_{org} vary between 0 and 0.10. A corollary of these results is that the proportion of oxidizing equivalents released by Archean organic matter burial could have been far less than previously thought. If correct, the analysis by Bjerrum and Canfield (2004) offers a potential solution to the “Late Archean oxygen problem” by alleviating tension between lipid biomarker data that place cyanobacterial oxygenic photosynthesis within the Archean Eon (Brocks et al., 2003a,b; Walldbaue et al., this volume) and other geological and geochemical proxies that suggest an O₂ mixing ratio ≪ 10⁻⁵ in the contemporaneous atmosphere and oceans (Rye and Holland, 1998; Rasmussen and Buick, 1999; Farquhar et al., 2000; Pavlov and Kasting, 2002).

Did a strong carbon isotopic gradient exist in ocean basins prior to the appearance of environmental oxygen? Previous work from the Pethei carbonate platform (deposited circa 1.9 Ga) of the Great Slave Lake Supergroup revealed that if any carbon isotopic gradient existed between shallow and deep-water stratigraphic sections, it was slight (<0.5‰) (Hotinski et al., 2004). But was this also the case in Late Archean oceans? If so, what then accounts for the observed difference in carbon isotope ratios between basinal siderites and shallow water stromatolites? Here, we report carbon isotopic data from a Late Archean carbonate platform and banded iron formation succession preserved with a depth transect along the western margin of the Kaapvaal Craton in South Africa, providing direct constraints on these issues. In addition, we use a simple mathematical model to explore the conditions under which a δ¹³C oceanic gradient might emerge and ask whether those criteria could reasonably have been met, given our (admittedly limited) understanding of Late Archean ocean chemistry, biology, and climate.

As well as providing information about the organic carbon burial fraction of the ancient carbon cycle, subtle variations in carbon isotopic ratios of sedimentary organic matter reveal complex interactions between environmental chemistry and biochemistry. Diverse mechanisms for fixing organic matter (Calvin cycle, reverse tricarboxylic acid cycle, 3-hydroxypropionate cycle, and reductive acetyl-CoA pathway) fractionate carbon isotopes to different degrees (Hayes, 2001). Heterotrophs, particularly those with fermentative metabolisms, further affect the isotopic compositions of organic carbon. On top of this, post-depositional diagenetic processes may alter original organic δ¹³C values dramatically. The primary challenge is therefore to de-convolve the effects of these processes on ancient sedimentary organic matter.
Late Archean kerogens include some of the most 13C-depleted carbon isotopic values measured in the entire stratigraphic record (Schoell and Wellmer, 1981; Strauss et al., 1992a; Strauss and Moore, 1992; Eigenbrode and Freeman, 2006). It has been suggested that these light 13C values developed in ecosystems where a significant proportion of the carbon incorporated into biomass derived from biogenic methane (Hayes, 1994; Hinrichs, 2002). Anomalously low 13C values have been documented previously from the Transvaal Supergroup on the Kaapvaal Craton (Beukes et al., 1990; Strauss and Beukes, 1996). Do these values constrain biosynthetic mechanisms in the Late Archean? How strong is the evidence for secondary recycling? And how were depositional values later affected by diagenesis? We report new organic carbon isotopic data arranged within a sequence stratigraphic framework that samples a variety of paleoenvironments and different host lithological units. These data allow us to explore the geological context of isotopically light Archean organic matter.

2. Oceanic carbon cycle mathematical model

All biogeochemically significant elements and isotopes in the oceans are distributed as a function of both ocean circulation (mixing) and the biological pump, referred to here as the production and vertical export of biogenic particles from surface waters to the deep oceans. Dynamics within modern ocean basins maintain a water-column carbon isotopic gradient of approximately 2‰ (Kroopnik, 1980; Broecker and Peng, 1982), sustained in part by the fixation of carbon in the surface ocean, the sinking of biomass from the mixed layer, and the subsequent remineralization of organic matter at depth. Collectively, these processes result in a net transfer of isotopically light carbon to the deep oceans. The biological pump acts to increase the water column isotopic gradient, while circulation of dissolved inorganic carbon (DIC) serves to dampen it. In this section we encode these intuitive relationships within a theoretical isotopic mass balance model of the oceanic carbon cycle, building on previous work from Broecker and Peng (1982) and Kump (1991). This mathematical formulation is useful because it compels biogeochemical arguments to remain internally consistent while allowing the efficient exploration of parameter space, as well as the generation of testable quantitative predictions. What set (or sets) of boundary conditions would produce a large (5–7‰) 13C gradient, and are these conditions consistent with estimates from first principles about the carbonate chemistry and biology of Late Archean oceans?

Fig. 1 shows the model’s topology. Two reservoirs are resolved, representing the mass of carbon in surface (M_s) and deep oceans (M_d), respectively. Three fluxes exchange carbon between these pools. The surface communicates with the deep reservoir via the biological pump (F_{bio}) and advection of inorganic carbon during mixing (F_{sd}). Carbon from the deep pool is returned to the surface oceans, also during mixing (F_{ds}). Each reservoir carries information about its isotopic composition; δ_s and δ_d describe the 13C of the surface and deep reservoirs, respectively. The isotopic composition of the biological pump flux is determined by the 13C of the surface ocean (δ_s), offset by a factor ε, which derives from the kinetic isotope fractionation incurred during carbon fixation. Our model is required to maintain both mass balance:

$$\frac{dM_s}{dt} = F_{ds} - F_{sd} - F_{bio}$$ (4)
$$\frac{dM_d}{dt} = F_{sd} + F_{bio} - F_{ds}$$ (5)

and isotopic mass balance:

$$\frac{dM_s\delta_s}{dt} = F_{ds}\delta_s - F_{sd}\delta_s - F_{bio}(\delta_s - \varepsilon)$$ (6)
$$\frac{dM_d\delta_d}{dt} = F_{sd}\delta_d + F_{bio}(\delta_s - \varepsilon) - F_{ds}\delta_d$$ (7)

In order to explore the behavior of a long-lived oceanic phenomenon (on the order of tens to hundreds of millions of years, far greater than estimates of the residence time of carbon in Archean oceans), our model is allowed to operate at steady state. Solving Eqs. (4)–(7) at steady state yields the following:

$$F_{ds} = F_{sd} + F_{bio}$$ (8)
$$F_{ds}\delta_d = F_{sd}\delta_s + F_{bio}(\delta_s - \varepsilon)$$ (9)

Together, Eqs. (8) and (9) describe the difference in carbon isotope ratios between the deep and surface oceans:

$$\delta_d - \delta_s = \left(\frac{F_{bio}}{F_{bio} + F_{sd}}\right) \varepsilon$$ (10)

Intuitively, this 13C difference is controlled by the fraction of the total carbon flux from surface to deep that originates from the biological pump, amplified by the degree of fractionation during autotrophic fixation (Kump, 1991). Given a typical (though not universal) form 1 ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) fractionation factor ($\varepsilon = 25$‰; Scott et al., 2004), expression (10) can be solved for a wide array of potential flux parameter values.

Fig. 2 illustrates the results of model calculations for the isotopic difference between the deep and surface carbon reservoirs contoured against fluxes of DIC downwelling (F_{sd}) and the biological pump (F_{bio}), both in mol C year$^{-1}$. Although estimates of modern DIC and particulate organic carbon fluxes vary (e.g. Broecker and Peng, 1982; Sundquist, 1985; Jahnke, 1996), they are consistent with model calculations of a 2‰ inter-reservoir isotopic difference in present day oceans ($F_{sd} = 3.0 \times 10^{15}$ mol C year$^{-1}$, $F_{bio} = 2.5 \times 10^{14}$ mol C year$^{-1}$). As a benchmark, this demonstrates that our model broadly captures the vertical behavior of the oceanic carbon cycle. In order to obtain a 6‰ gradient within modern ocean basins, the oceans would have to contain far less DIC or, alternatively, the biological pump would have to increase nearly 4-fold.

Few primary data exist on the strength of the biological pump in earlier oceans; but there are good reasons to suggest that it was, if anything, weaker than today. The physical characteristics of particulate organic matter determine rates of sinking from the surface ocean. Small particles, ranging in size from 1 to 12 μm, sink extremely slowly if at all (rates on the order of 0–0.1 m d$^{-1}$; McCave,
The biological pump therefore is made up of large sinking particles, fecal pellets, and amorphous aggregates. Zooplankton fecal pellets contribute to this flux, but the chief proportion is composed of marine snow and phytoplankton aggregates (Turner, 1975). The small density contrast between the organic components composed of marine snow and phytoplankton aggregates and surrounding seawater (1.024 g cm$^{-3}$) demands the presence of mineral ballast to assist in sinking. During the Precambrian (and, indeed, before the mid-Mesozoic) few phytoplankton produced mineralized skeletons that could provide ballast to drive the biological pump, leaving only lithogenic particles to aid in sinking. More specific to the Late Archean, it has been argued that before either the evolution or widespread use of oxygenic photosynthesis, total primary production would have been significantly lower because of strong phosphorus limitation or limited supply of electron donors (Bjerrum and Canfield, 2002; Canfield, 2005; Kharecha et al., 2005; Canfield et al., 2006). Consequently, it is unlikely that the biological pump in late Archean oceans was stronger than today’s; the reasoning presented above suggests that it was probably less effective.

Is it possible then that Archean oceans contained less DIC than they do today? According to stellar evolution models, the Sun’s luminosity has increased on the order of 25% over the age of the solar system; to reconcile this inference with geological observations of ancient liquid water, it was suggested that greenhouse gases (Sagan and Mullen, 1972), in particular CO$_2$ (Owen et al., 1979; Walker et al., 1981) in Archean air were present in much greater concentrations than today. Accepting that the partial pressure of CO$_2$ was higher at 2.7–2.5 Ga than it is today, how would this have been reflected in ocean DIC concentrations?

The carbonate system consists of six variables ([CO$_2$], [HCO$_3^-$], [CO$_3^{2-}$], [H$^+$], DIC, and total alkalinity), and specific knowledge of any two is required to solve for the others. The ancient carbonate system has commonly been explored through the application of a simple calcite equilibrium model (Holland, 1972; Walker, 1983; Grotzinger and Kasting, 1993; Hotinski et al., 2004), an approach that requires several assumptions: (1) the oceans were at equilibrium (or several times supersaturated) with respect to calcite, (2) knowledge of [Ca$^{2+}$] (often fixed at modern ocean concentrations), and (3) the activities of chemical species equaled their concentrations in seawater. The advantage to this procedure is that it is well supported by the ubiquity of marine carbonates in the geologic record. Its disadvantage is that the calcium concentrations of ancient oceans are little understood, and the solubility product constants underpinning such models can vary considerably, stemming in part from differences in the activity coefficients between Ca$^{2+}$ and CO$_3^{2-}$ (Stumm and Morgan, 1996; Zeebe and Wolf-Gladrow, 2001). For this reason, a different approach is taken here. By fixing [H$^+$], our model can be solved for a variety of P$_{CO_2}$ values. The calculation uses Henry’s law, first, and second acidity constants, at $T=25\, ^\circ C$, $P=1\, atm$, and $S=35$ (Zeebe and Wolf-Gladrow, 2001). Although the exact average pH of the Late Archean oceans remains unknown, this exercise can be iterated for a range of plausible values. Fig. 3 illustrates calculations of the difference in carbon isotope ratios between the deep and surface ocean reservoirs as a function of the biological pump (F_{bio}) and P$_{CO_2}$, at four different pH values. Again, the model correctly describes a 2% inter-reservoir isotopic difference at pH 8.08, consistent with estimates of internal carbon fluxes in modern oceans. At higher pH (favoring HCO$_3^-$ and CO$_3^{2-}$) the oceans contain more DIC, resulting in a larger F_{sd} flux and, thus, smaller isotopic differences. At lower pH the opposite occurs. Simulations from one dimensional atmospheric climate models suggest that the low-end estimate of P$_{CO_2}$ for the Late Archean atmosphere would be approximately 104 μatm (Kasting, 1987, 1993). At or above this P$_{CO_2}$, our model predicts large carbon isotopic gradients only at strikingly low ocean pH values. If such low pH oceans ever existed, they would have required extraordinarily high Ca$^{2+}$ concentrations to account for the widespread production of calcium carbonate in Archean sedimentary basins (Grotzinger and Kasting, 1993).

The calculations and reasoning presented here suggest that under conditions characterized by high P$_{CO_2}$ and moderate ocean pH, a strong vertical carbon isotopic gradient in Late Archean ocean basins is unexpected, particularly if the biological pump was no stronger than modern. While it is possible that there were additional processes ignored here (it has, for example, been speculated that 13C-depleted hydrothermal plumes influenced deep water carbon chemistry; Beukes et al., 1990) that contributed to isotopic differences within the water column, a 6% δ13C gradient, sustained globally, seems unlikely. What, then, explains the consistent finding...
of strong isotopic difference between shallow marine carbonates and siderites in basinal iron formations? In the following section this question is explored directly, using carbon isotope data from several deep drill cores sampled along a depth transect perpendicular to the margin of a Late Archean carbonate platform.

3. Campbellrand–Kuruman sedimentary succession

In South Africa, the Late Archean to Paleoproterozoic Transvaal Supergroup is preserved in two distinct structural basins (Griqualand West and Transvaal proper) over an area of 200,000 km²; the original deposit likely extended across the entire 600,000 km² surface of the Kaapvaal Craton (Fig. 4; Button, 1973; Beukes, 1987; Sumner, 1995). The Transvaal succession sits disconformably atop volcanic and intercalated sedimentary rocks of the Ventersdorp Supergroup (felsic volcanics from the upper Ventersdorp yielded a U-Pb ion microprobe age from zircon of 2714 ± 8 Ma; Armstrong et al., 1991). Thermal subsidence after the heating and thinning of the Kaapvaal Craton during Ventersdorp accumulation likely afforded the accommodation space necessary for deposition of the Transvaal Supergroup (Schmitz and Bowring, 2003; Sumner and Beukes, 2006).

In Griqualand West, three distinct subgroups of the Transvaal Supergroup have been recognized. The Schmidtsdrief Subgroup consists of mixed siliciclastic and carbonate units with an inferred maximum age between 2642 ± 3 Ma and 2664 ± 1 Ma, based on correlation with units elsewhere in the basin (Barton et al., 1995; Walraven and Martini, 1995). Resting conformably on top of the Schmidtsdrief, the ∼2588–2520 Ma (Barton et al., 1994; Sumner and Bowring, 1996; Altermann and Nelson, 1998) Campbellrand Subgroup is represented by an areally extensive, ∼2 km thick marine platform. The platform began as a carbonate ramp flanking siliciclastic tidal flats along basement highs and developed into a mature rimmed carbonate shelf that spread across the entire Kaapvaal Craton (Beukes, 1987). Eventually the carbonate platform drowned during a major transgression, reflected in the deposition of the ∼2460 Ma (Pickard, 2003) Kuruman Iron Formation (Beukes, 1984). In general, the Campbellrand platform and Kuruman Iron Formation appear to reflect the passive accumulation of chemical precipitates on thinned continental crust (marine platform) adjacent to a major Late Archean ocean basin.

Today the Campbellrand–Kuruman sedimentary succession is essentially undeformed across much of the ancient craton. Steeper dips occur around the Bushveld Igneous Complex, and acoustic folding and faulting appears along the western edge of the craton, where Proterozoic red beds of the Olifantschoek Group are thrust over Campbellrand rocks (Stowe, 1986; Beukes, 1987; Beukes and Smit, 1987). Significant metamorphism is limited locally to rocks near the Bushveld complex; the rest of the Campbellrand is below greenschist facies equivalent (Button, 1973; Miyano and Beukes, 1984). Textures within the rocks are commonly well preserved by fabric-retentive, early diagenetic dolomite (Sumner and Grotzinger, 2000).

Within the Campbellrand–Kuruman sedimentary succession, it is possible, in principle, for any given time horizon to trace paleoenvironments laterally from shallow water tidal flats, populated with stromatolites, oolitic grainstones, and pseudomorphs of aragonite crystal fans, into slope and basinal microbialites, turbidites, mudstones, and iron formation deposited in deep water (several hundred m to >1 km water depth). The Campbellrand–Kuruman stratigraphy is locally well exposed, but key areas, including the platform to basin transition, are not. An intact slice of the Campbellrand platform margin can be found in Griqualand West, 25–100 km northeast of Prieska. Campbellrand–Kuruman rocks are well preserved in this area (particularly for Archean sediment), though their flat-lying orientation is both a blessing and a curse. In order to examine the platform to basin transition, the Agouron Drilling project (http://agouron.spectraconsulting.co.za) collected two deep diamond drill cores from this area, one from the paleogeographic upper slope (GKF01), and the second from the paleogeographic lower slope (GKP01) (Fig. 4). Samples from these fresh drill cores were supplemented with material from an existing proprietary drill core capturing shallow water platform paleoenvironments (BH1-Sacha). Data from these three cores permit the investigation of compositional differences between carbonates deposited across a wide range of water depths, in a sedimentary basin that also accumulated iron formation beneath its deepest waters.

A generalized stratigraphy of the Transvaal Supergroup in the Griqualand West basin, including projected locations of the three drill cores, is shown in a northeast to southwest trending cross section in Fig. 5. Detailed descriptions of the sequence stratig-
Fig. 4. Geological map of the Transvaal Supergroup preserved on the Kaapvaal Craton, modified from Sumner and Beukes (2006). A segment of the Campbellrand Platform margin is preserved in the Griqualand West structural basin. Locations of the drill cores GKP01, GKF01, and BH1-Sacha are labeled.

raphy, lithological units, sedimentology, and major, minor, and trace element geochemistry of the two Agouron cores (GKP01 and GKF01) can be found in Schröder et al. (2006) and Sumner and Beukes (2006). The sedimentology of BH1-Sacha is described by Altermann and Siegfried (1997). To facilitate discussion, however, salient points of the sedimentary geology are summarized here. The Vryburg Formation records the first post-Ventersdorp marine transgression of the Kaapvaal Craton in Griqualand West. The lower part consists primarily of ripple-laminated sandstones that deepen upwards into pyritic shales and turbidites. The contact between the Vryburg and Boomplaas formations is gradational, characterized by shale and thin carbonate interbeds with increasing carbonate content up section. Declining siliciclastic flux during high stand was followed by progradation of a short-lived carbon-
rand Platform. The platform can be broadly divided into two large sequences, the Lower Nauga/Reivilo and the Upper Nauga formations, each representing aggradational packages separated by a striking thin transgressive unit comprised in part by the Kamden Member at the top of the Lower Nauga/Reivilo Formation. Near the top of the Lower Nauga/Reivilo Formation, there was pronounced deepening across the platform, which began with the deposition of deep subtidal, fenestral microbialites and culminated in the accumulation of siderite and hematite facies iron formation (the Kamden Member). Carbonate deposition was then reestablished by the Upper Nauga Formation, which inherited the original margin location. During Upper Nauga time, the Campbellrand Platform slope was at its steepest, with a lagoon that developed episodically behind the reef margin. Beginning with the Naute/Gamohaan formations, a major transgression led to the ultimate demise of the Campbellrand Platform, as carbonate deposition was slowly outpaced by accommodation. The Naute/Gamohaan formations are characterized by deep subtidal fenestral microbialites and shales with increasing chert content that ultimately grade into iron formation of the Kuruman Formation, which accumulated across the entire Kaapvaal Craton. At their tops, all three cores contain an erosional unconformity where Permian tillites of the Karoo Supergroup incised into the Transvaal sequence. In GKP01 and GKF01 the lower Kuruman Formation is still preserved, however in BH1-Sacha, the Kuruman Formation was removed altogether and the young tillites rest directly on Gamohaan Formation microbialites.

Differences in paleoenvironmental water depth among BH1-Sacha, GKF01, and GKP01 vary significantly throughout the stratigraphy. During deposition of the Boomplaas Formation, all three cores capture approximately the same shallow water facies. This changed dramatically, however, as the Campbellrand Platform developed. The strongest contrast between water depths at the three core locations occurred during the deposition of the Lower and Upper Nauga formations, and likely continued through the transition to iron formation. Differing accumulation rates led to stratigraphic thicknesses that are greatest on the platform and thin considerably across the margin toward the basin (dip-corrected thickness ratios between BH1-Sacha, GKF01, and GKP01 are approximately 10:4:3). Estimates of absolute water depths are uncertain. The intertidal to shallow subtidal facies contained in BH1-Sacha suggest deposition from very near sea level to several meters water depth. The Campbellrand–Kuruman stratigraphy present in the two Agouron cores above the Monteville Formation lacks evidence of wave-influenced sedimentary structures; the only sedimentary grains present in these sections are associated with gravity flow deposits, indicating that both cores capture sub-wave base environments. Assuming that the Campbellrand Platform attained a typical marine slope profile (Adams and Schlager, 2000), it is possible to estimate water depths from the location of the cores with respect to the orientation of the platform margin. Conservatively, a slope of 4° results in potential water depths of several hundred meters in GKF01 to greater than 1 km for the distally positioned GKP01. Other estimates derived from comparisons of stratigraphic thicknesses suggest water depths somewhat shallower (Klein et al., 1987). Nonetheless, in modern ocean basins the largest of rate of change in the δ13C of seawater occurs through the mixed layer (in the upper <250 m of the water column, and often shallower; Broecker and Peng, 1982). If a strong carbon isotopic gradient existed, it should be captured among BH1-Sacha, GKF01, and GKP01. In addition to the differences in water depth among the three core locations, each individual core records an overall deepening-upward trend into iron formation depositional environments as the carbonate platform was progressively drowned. This provides an additional means of capturing different paleoenvironmental water depths.

Ancient sedimentary successions can only record an isotopic depth gradient if carbonates deposited at depth were precipitated in place and not transported from shallow sources (e.g. Hotinski et al., 2004). In younger depositional systems, this condition is generally not met; carbonate was produced in shallow water environments and subsequently advected to sites undergoing active sedimentation. In the Campbellrand–Kuruman sedimentary succession, however, seafloor carbonate precipitates occur throughout the depth profile, where they commonly constitute a major fraction of the total carbonate (Sumner, 1995, 1997a,b; Sumner and Grotzinger, 1996a,b, 2004; Schröder et al., 2006; Sumner and Beukes, 2006). This in situ precipitation, coupled with a stratigraphic framework that samples a large range of paleoenvironmental water depths in both space and time, provides the sampled needed to examine δ13C distributions as they once existed in the water column of a Late Archean ocean basin.

4. Carbon isotope analysis

4.1. Carbonate carbon

GKP01 and GKF01 samples were obtained for isotope analysis from splits of whole rock samples for which elemental data were also measured (Schröder et al., 2006). Samples were collected from the cores at approximately 5 m intervals and ground into powder in an agate vibratory disc mill, with a slice retained for thin section analysis. In addition to the whole rock analyses, a number of samples were collected at tighter intervals by microdrilling several mg of powder from specific laminations, avoiding any secondary veining. During the microsampling of iron formation carbonates care was taken to target fine-grained siderite-rich laminations, avoiding (late diagenetic) coarse-grained rhombohedral ankerite and ferroan-dolomite. Carbonate δ13C and δ18O values were measured concurrently on a VG Optima dual inlet mass spectrometer fed by an isocarb preparation device in the Harvard University Laboratory for Geochemical Oceanography. Many of the samples measured from the cores were composed of dolomite. To avoid memory effects associated with dolomite analyses, longer reaction and sample pump out times were used. Carbonate samples (~1 mg) were dissolved in a common anhydrous H2PO4 bath kept at 90°C for 8 min. Evolved CO2 was purified and captured cryogenically, then measured against an in-house reference gas. Typical analytical uncertainty was ±0.1‰. Results were calibrated and reported with reference to Vienna Pee Dee Belemnite using a laboratory Cararra Marble standard. Six measurements of the laboratory standard were made within every run of 54 samples.

Carbonates from BH1-Sacha were analyzed in the Environmental Isotope Group at iThemba Labs, South Africa. Samples were reacted following a technique modified after McCrea (1950) with 10–11 mg of each sample and 2 ml of 100% H3PO4 bath kept at 90°C for 8 min. Evolved CO2 was purified and captured cryogenically, then measured against an in-house reference gas. Typical analytical uncertainty was ±0.1‰. Results were calibrated and reported with reference to Vienna Pee Dee Belemnite using a laboratory Cararra Marble standard. Six measurements of the laboratory standard were made within every run of 54 samples.

Carbonates from BH1-Sacha were analyzed in the Environmental Isotope Group at iThemba Labs, South Africa. Samples were reacted following a technique modified after McCrea (1950) with 10–11 mg of each sample and 2 ml of 100% H3PO4 bath kept at 90°C for 8 min. Evolved CO2 was purified and captured cryogenically, then measured against an in-house reference gas. Typical analytical uncertainty was ±0.1‰. Results were calibrated and reported with reference to Vienna Pee Dee Belemnite using a laboratory Cararra Marble standard. Six measurements of the laboratory standard were made within every run of 54 samples.

Carbonates from BH1-Sacha were analyzed in the Environmental Isotope Group at iThemba Labs, South Africa. Samples were reacted following a technique modified after McCrea (1950) with 10–11 mg of each sample and 2 ml of 100% H3PO4 bath kept at 90°C for 8 min. Evolved CO2 was purified and captured cryogenically, then measured against an in-house reference gas. Typical analytical uncertainty was ±0.1‰. Results were calibrated and reported with reference to Vienna Pee Dee Belemnite using a laboratory Cararra Marble standard. Six measurements of the laboratory standard were made within every run of 54 samples.

Carbonates from BH1-Sacha were analyzed in the Environmental Isotope Group at iThemba Labs, South Africa. Samples were reacted following a technique modified after McCrea (1950) with 10–11 mg of each sample and 2 ml of 100% H3PO4 bath kept at 90°C for 8 min. Evolved CO2 was purified and captured cryogenically, then measured against an in-house reference gas. Typical analytical uncertainty was ±0.1‰. Results were calibrated and reported with reference to Vienna Pee Dee Belemnite using a laboratory Cararra Marble standard. Six measurements of the laboratory standard were made within every run of 54 samples.

Carbonates from BH1-Sacha were analyzed in the Environmental Isotope Group at iThemba Labs, South Africa. Samples were reacted following a technique modified after McCrea (1950) with 10–11 mg of each sample and 2 ml of 100% H3PO4 bath kept at 90°C for 8 min. Evolved CO2 was purified and captured cryogenically, then measured against an in-house reference gas. Typical analytical uncertainty was ±0.1‰. Results were calibrated and reported with reference to Vienna Pee Dee Belemnite using a laboratory Cararra Marble standard. Six measurements of the laboratory standard were made within every run of 54 samples.
(aliquot difference of a duplicate analysis). This could be achieved in all cases, save for a few exceptions. In these cases, an aliquot spread of <0.2‰ had to be accepted. These values, however, still lie within a ±0.1‰ (1σ) space around the average of a duplicate analysis.

4.2. Organic carbon

Abundances of total carbon (TC) and total inorganic carbon (TIC) were measured on whole rock powder samples from GKP01 and GKF01 with a CS-MAT 5500 for solids using NDIR spectroscopy. Total organic carbon (TOC) abundances were calculated as difference between TC and TIC. Analytical errors were ≤2%. For organic carbon isotope measurements, CO₂ was prepared via sealed tube combustion of carbonate-free rock powder (Strauss et al., 1992b). Isotope measurements (δ¹³Corg) were performed with a Finnigan Delta-plus mass spectrometer, equipped with a dual-inlet system. International reference material USGS 24 and several laboratory standards (paper shale, brown coal, and anthracite) were used for calibration. Carbon isotope results are reported in the standard delta notation as per mil difference from the Vienna Peedee Belemnite standard. Reproducibility, as determined through replicate measurements, was better than ±0.2‰.

5. Results

5.1. Carbonate carbon

Fig. 6 illustrates the detailed stratigraphy of GKP01, GKF01, and BH1-Sacha plotted against carbonate δ¹³C values. The vertical scale for BH1-Sacha is one half that of GKP01 and GKF01, which appear at the same scale. In order to compare isotope ratios between the three cores, two lines of correlation are drawn. The datum used to align the cores was the flooding of the Boomplaas carbonate platform. An additional line of correlation was drawn through the iron formation of the Kamden Member of the Lower Nauga/Reivilo Formation, a robust lithologic and sequence stratigraphic marker present in all three cores. Because of both the steep platform margin geometry attained during post-Kamden time and the presumed time-trangressive nature of the deepening into the Kuruman Formation, it is difficult to correlate in an absolute sense between the platform top and slope/basinal stratigraphic sections above this horizon (Summer and Beukes, 2006). Nonetheless, we have confidence that water depths increase both along timelines from northeast to southwest, and upsection among and within BH1-Sacha, GKF01, and GKP01.

Carbonate δ¹³C data from the three drill cores tend to cluster around a mean value of −0.5‰ throughout the Campbellrand Platform (both between cores and within cores), indicating that the isotopic composition of water column DIC within this ocean basin was nearly uniform with depth. Noticeable deviations toward lighter isotopic values do, however, occur in specific horizons. These are prevalent in the mixed siliciclastic carbonate sections near the bottom of all three cores, and at the top of GKP01 and GKF01, but are rare within thick platform carbonate. These horizons are characterized lithologically by a prevalence of shale, tend to be relatively carbonate poor (e.g. ¹³C-depletion at ~480 m in GKP01), correlate with high weight percent iron (Schröder et al., 2006), and commonly demonstrate cm-scale δ¹³C variability of >1.0‰. Iron formation lithologies contain the strongest ¹³C-depletion. Carbon isotope ratios of carbonate in siderite-rich iron formation are highly variable, with δ¹³C values that range from −0.5‰ to as low as −15‰. This is documented clearly in GKF01 in the vicinity of the Kamden Member. Microbialite facies above and below the Kamden iron formation have δ¹³C values tightly grouped around ~0.5‰. Within the iron formation sensu strictu, the isotopic composition of siderites

![Fig. 6. Carbonate δ¹³C data plotted against the detailed stratigraphy from drill cores GKP01, GKF01, and BH1-Sacha. Note the change in scale for BH1-Sacha. Two lines of correlation are drawn, the sequence boundary marked by the flooding of the Boomplaas platform and deposition of the Kamden iron formation.](image-url)
varies unsystematically on a cm length scale from near water column values of −0.5‰ down to −7.6‰.

5.2. Carbonate oxygen

Oxygen isotope ratios of carbonate minerals can provide a measure of post-depositional alteration. δ18O data for GKP01 and GKF01 appear in Fig. 7A. GKP01 δ18O values range from a low of −16.7‰ to a high of −5.5‰, with a median value of −8.5‰. GKF01 δ18O displays a spread from −10.8 to −5.5‰, median value of −7.6‰. These values are similar to those measured previously from shallow water Campbellrand stromatolites and the Kuruman iron formation (Beukes et al., 1990), and Archean and Paleoproterozoic carbonates in general (Shields and Veizer, 2002). The δ18O core depth distributions suggest that GKP01 has experienced greater diagenetic alteration than GKF01, particularly in the shale-rich horizons present below 1000 m and above 500 m. Plots of carbonate δ18O and δ13C data for GKP01 and GKF01 are illustrated in Fig. 7B. Carbonates from GKP01 shales show the positive relationship between δ18O and δ13C (Fig. 7B, dashed envelope) expected for diagenesis; this is distinct from the low δ13C values in the iron formation (Fig. 7B, solid envelope), which do not show such a trend. In both cores, the least altered horizons appear to be those associated with the deposition of the thick carbonate sequences of the Lower Nauga/Reivilo and Upper Nauga formations (the same areas for which the δ13C water depth test is the most explicit).

5.3. Organic carbon

Carbon isotope ratios of organic carbon and total organic carbon (TOC) weight percents of samples from GKP01 and GKF01 are plotted according to the stratigraphy in Fig. 8. Again the two lines of correlation shown are the Boomplaas flooding event and deposition of the Kamden iron formation. Both cores are quite organic rich. TOC ranges from <0.01 to 11.85 wt.%, with mean values of 1.68 and 1.32 wt.% for GKF01 and GKP01, respectively. The highest TOCs occur within the Naute Formation shales; lesser peaks occur at different stratigraphic horizons throughout the Campbellrand Platform.

Carbon isotope ratios of organic matter from these cores show significant variability (on m length scales) and expose several systematic relationships. δ13C values in GKF01 range from −44.83 to −24.03‰, with a mean of −33.31‰ and a standard deviation of 3.29‰. Similarly, in GKP01, organic carbon δ13C ranges from −43.94 to −20.38‰, with a mean of −33.66‰ and a standard deviation of 3.85‰. Frequency distributions of δ13C values from each core appear symmetrical. In GKP01, the stratigraphic trend emerging from the δ13C data resembles a backwards ‘C’, with 13C-depleted organics more prevalent in both the shale-rich lower and upper sections of the core. Such a trend does not appear as clearly in GKF01, which does not extend deeply into the siliciclastic-rich lower Schmidtsdrif stratigraphy. In addition to stratigraphic differences, an interesting lithologic pattern exists between the carbon isotope ratios of shales (filled circles) and carbonates (open triangles).
in Fig. 8. Shales are commonly >1‰ lighter than stratigraphically adjacent carbonates (particularly in GKF01); rarely do we see the opposite. There does not, however, appear to be a strong relationship between TOC and organic carbon δ13C (Fig. 7C). GKF01 does reflect a weak correlation at TOC < 1 wt.%, however the relationship breaks down at higher TOCs, and does not really emerge at all in GKP01. δ13C values from organic matter reveal no significant trend with paleoenvironmental water depth, either between the two cores, or within the deepening upward trend captured within individual cores. Shales deposited in shallow water (e.g. GKP01 1200–1250 m) have a similar organic carbon isotopic composition to those deposited in deep water (e.g. GKP01 ~310 m).

6. Discussion

Much of our current understanding of the Archean Earth system rests on relatively small datasets from one-dimensional studies of specific localities. This previous work provided valuable insights and led to interesting hypotheses (e.g. Hayes, 1994; Bjerrum and Canfield, 2002) proposing that aspects of the Late Archean carbon cycle operated in a fashion very different from younger times in Earth history. In this study, we offer new high-resolution data and a set of fresh constraints on the state and operation of the Late Archean carbon cycle, based on analyses of carbonate and organic carbon isotope ratios along a depth transect across the Campbellrand carbonate platform. This approach was guided by several specific questions: Did a large (~6‰) δ13C gradient exist in the ocean basin in which the Campbellrand Platform precipitated? If not, then what accounts for the 13C-depleted siderites from the associated iron formation? And finally, can we provide additional geologic context for the anomalously low δ13C values commonly observed in Late Archean organic carbon?

Previous measurements of Late Archean stromatolitic carbonates yielded δ13C values close to 0‰ (Schidlowski et al., 1975; Beukes et al., 1990; Veizer et al., 1992; Strauss and Moore, 1992; Shields and Veizer, 2002), and the new data from the Transvaal Supergroup agree with these observations. Furthermore, carbonates precipitated across a wide range of water depths in the Campbellrand-Kuruman sedimentary succession reveal approximately the same carbon isotope ratio (~0.5‰), establishing that the δ13C of water column DIC was largely uniform. This isotopic distribution differs from that of DIC in ocean basins today. Considered within the context of the mathematical model developed above, these data suggest that either Late Archean oceans contained a much larger pool of DIC (in the face of greater atmospheric CO2 concentrations hypothesized to keep the oceans from freezing) or that the biological pump was much weaker than today. Probably both were true. If future studies can place independent limits on the strength of the Late Archean biological pump, then, in principle, it should be possible to determine a lower limit on the pH of this ancient ocean.

Several observations suggest that the low δ13C values measured within iron formation carbonate minerals (i.e., siderite) resulted from diagenetic remineralization of organic matter within precursor sediments. Sedimentologic and petrographic textures indicate that the siderite microbands commonly found in Campbellrand and Kuruman iron formation were present in the sediments during early diagenesis, prior to sedimentary compaction (Beukes, 1984; Beukes et al., 1990; this study). The pattern of carbon isotope ratios in iron formation siderite bolsters this conclusion and provides support for existing ideas that envision microbial iron respiration as a key process linked to the deposition of Late Archean iron formation. It has been noted many times previously that sideritic iron formation is commonly 13C-depleted, with values as low as ~15‰ reported.
(Becker and Clayton, 1972; Perry and Tan, 1972; Beukes et al., 1990; Kaufman et al., 1990; Kaufman, 1996; Ohmoto et al., 2004). Our data confirm this, but also indicate that some iron formation siderites had δ13C values close to those of calcites and dolomites in shallower parts of the same basin. Given a water column where DIC is constrained to be around ~0.5, this strongly suggests that the siderites were precipitated diagenetically from sedimentary pore fluids where organic matter remineralization was commonly strong enough to alter significantly the δ13C of local DIC. In modern marine environments, the carbon isotopic composition of carbonates precipitated from within pore fluids can depart strongly from water column values (e.g. Irwin et al., 1977; Mazzullo, 2000).

The precipitation of siderite during diagenesis of organic-rich sediments can be described by the following reactions. Ferric hydroxides are reduced to soluble ferrous iron with electrons from organic matter (represented here by formaldehyde):

\[
\text{CH}_2\text{O} + 8\text{H}^+ + 4\text{Fe(OH)}_3 \rightarrow 4\text{Fe}^{2+}_{(aq)} + \text{CO}_2 + 11\text{H}_2\text{O}
\]

This process acts as a strong alkalinity pump and will tend to drive the precipitation of siderite (which is rather insoluble compared with other carbonate salts; Stumm and Morgan, 1996):

\[
\text{Fe}^{2+}_{(aq)} + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{FeCO}_3 + 2\text{H}^+
\]

The carbon isotope ratios of siderite will therefore carry some isotopic memory of the remineralized organic carbon. Additional support for an early diagenetic origin of the siderites is provided by the range and scale of variability demonstrated by siderite δ13C values. We observe that siderite δ13C values vary on a cm-scale from near water column values (~0.5‰ as determined by deep water precipitates) to ~7‰. A similar pattern of variation has been reported in iron formations from the Hamersley Supergroup of Western Australia (Baur et al., 1985). This length scale of variability again points to a pore fluid origin, where organic concentrations can be large relative to the DIC reservoir size, respiration is fast, and mixing is limited largely by the timescale of diffusion. Ultimately, the precipitation and isotopic composition of siderite suggests that similar fluxes of ferric hydroxides and organic matter were supplied to sediment-starved areas undergoing iron formation deposition. The consumption of organic matter coupled to iron reduction (reaction (11)) probably occurred rapidly (Lovely et al., 1991), altering the pore fluid carbonate isotope abundances. Thus, the variable and often 13C-depleted isotopic composition of iron formation siderites, in contrast with the uniform carbon isotope abundances of deep water carbonate precipitates, provides support for hypotheses that imply microbial iron respiration as a conspicuous metabolism in Late Archean sedimentary environments (e.g. Walker, 1984; Vargas et al., 1998; Johnson et al., 2003, 2004; Konhauser et al., 2005; Archer and Vance, 2006; Fischer and Knoll, 2009).

The relative abundance of carbon isotopes preserved in ancient organic matter records complex interactions among a variety of processes, from different biochemical mechanisms of fixing and remineralizing carbon to variations in paleoenvironmental chemistry and post-depositional diagenesis and metamorphism. Preferential loss of isotopically light (relative to the parent material), low molecular weight hydrocarbons during post-depositional thermal degradation results in a lower H/C ratio and a 13C-enrichment of residual kerogen (McKirdy and Powell, 1974). Because dehydrogenation will tend to drive the δ13C higher, it suggests that the anomalously light carbon isotope abundances measured from Late Archean successions (Strass and Moore, 1992; Beukes et al., 1990; Strass and Beukes, 1996; this volume) might more closely describe the primary depositional organic carbon composition. Despite this, the required differences in H/C ratios [from primary H/C = 1.2 down to <0.1 (Eq. (3) from Des Marais et al., 1992)] are probably too great to account for the wide variability of values more positive than the minima present in GKPO1 and GKF01 organic carbon δ13C (Waldbauer et al., this volume). This suggests that either additional diagenetic processes affected organic carbon isotopic composition in addition to dehydrogenation, or that there was significant isotopic heterogeneity present within the ancient sedimentary environment. Our observed m-scale lithologic pattern, wherein shale organics tend to be more 13C-depleted than carbonate organics, is also present in other organic δ13C datasets from Late Archean strata (Strass et al., 1992a; Strass and Beukes, 1996; Eigenbrode and Freeman, 2006). Whether this pattern reflects true, albeit slight, paleoenvironmental differences (Eigenbrode and Freeman, 2006) or differing patterns of diagenesis is difficult to know with certainty. We note that areas in GKPO1 and GKF01 that contain interbedded shale and carbonate horizons accumulated both organic matter and carbonate minerals in essentially the same paleoenvironments – there does not appear to be any clear trend with water depth between correlative sequences in the two cores. This is highlighted in GKPO1, where markedly light carbon isotope ratios occur in shaly units of both shallow water facies in the lower part of the succession and deep water facies near the top (Fig. 8). When constrained by lithology, organic carbon in the intervening carbonate-rich interval shows no strong facies trend. Host lithology appears to be a good predictor of organic carbon isotopic composition, whereas paleoenvironment and water depth do not. The effects of diagenesis notwithstanding, it is difficult to find a unique biological interpretation of the organic carbon δ13C data. If the pattern of carbon isotope fractionation exhibited by extant biochemistry (Hayes, 2001) was present unchanged in the Late Archean (a somewhat tenuous assumption) then the data documented herein are consistent with several different mechanisms of carbon fixation, including secondary modification by heterotrophic processes. In particular, the presence of values ~40‰ may reflect abundant ecosystem methanotrophy (Schoell and Wellmer, 1981; Hayes, 1994; Hinrichs, 2002), although as yet it is difficult to rule out additional processes, such as autotrophic carbon fixation by carbon monoxide dehydrogenase via the reductive acetyl CoA pathway (Hayes, 2001). What global datasets make clear is that comparably 13C-depleted organic matter occurs more often in Late Archean rocks than in younger successions (Strass et al., 1992a; Strass and Moore, 1992; Shields and Veizer, 2002; Eigenbrode and Freeman, 2006).

To the degree that the rock sequences studied here capture global biogeochemical conditions, our results provide valuable insight into the burial history of organic matter and the interaction between acid–base and redox facets of the Late Archean carbon cycle. If the δ13C of DIC was uniform or nearly so in Late Archean oceans, the isotopic composition of basaltic carbonates would have mirrored seawater. This is supported in part by carbon isotope measurements from carbonates within Archean seafloor basalts (δ13C = −0.3‰, Nakamura and Kato, 2004). Put another way, the term Δc in equation (3) goes to zero and the method for estimating organic carbon burial derived by Bjerrum and Canfield (2002) reverts to the standard model described by Eq. (1). If correct, this confirms that the burial of organic carbon was significant (steady-state estimates from our data suggest forg = .15) and necessitates a flux of oxidants into the fluid Earth at this time. If water was the primary source of electrons for Late Archean autotrophs then a flux of O2 into the environment must have existed prior to the rise of atmospheric oxygen (Kump et al., 2001; Holland, 2002). However, if Fe(II) was the primary electron donor, iron formation oxide minerals might account for the required oxidant flux (Walker, 1987; Widdel et al., 1993; Konhauser et al., 2002).

The relative stability of for, through both anoxic and oxic epochs of Earth history is remarkable. Mechanisms that control organic carbon burial have been suggested to provide feedbacks that stabilize the oxygen content of the atmosphere; these proposals rely...
either directly (Hedges and Keil, 1995; Hartnett et al., 1998) or indirectly (VanCappellen and Inglis, 1996; Colman and Holland, 2000) on environmental O2 levels. What feedback(s) controlled the burial of organic carbon during Archean time, before the rise of oxygen? Data such as those from the Campbellrand–Kuruman sedimentary succession raise the possibility that a mechanism exists, as yet unrecognized, that controls the burial fractions of carbonate and organic matter over long time scales, both in the presence and absence of environmental oxygen.

Acknowledgements

The authors wish to acknowledge Jake Waldbauer and Jay Kaufman for reviews. We thank John Higgins, Paul Hoffman, and Ann Pearson for helpful discussions. WWF and AHK thank the Agouron Institute for funding. Half cores of GKP01, GKF01, and BH1-Sacha are currently housed at the Council for Geoscience in Tshwane (formerly Pretoria), Gauteng Province, South Africa. The cores GKP01 and GKF01 were collected as part of the Agouron Drilling Project (http://agouron.spectraconsulting.co.za).

References

Johnson, C.M., Beard, B.L., Beukes, N.J., Klein, C., O’Leary, J.M., 2003. Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contributions to Mineralogy and Petrology 144, 523–547.
Concluded.