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ABSTRACT

Iron formations are typically thinly bed-
ded or laminated sedimentary rocks con-
taining 15% or more of iron and a large pro-
portion of silica (commonly >40%). In the 
ca. 2590–2460 Ma Campbellrand-Kuruman 
Complex, Transvaal Supergroup, South 
Africa, iron formation occurs as a sediment-
starved deepwater facies distal to carbonates 
and shales. Iron minerals, primarily sider-
ite, defi ne the lamination. The silica primar-
ily occurs as thin beds and nodules of diage-
netic chert (now microcrystalline quartz), 
fi lling pore space and replacing iron forma-
tion minerals and co-occurring deepwater 
lithologies. Mechanisms proposed to explain 
precipitation of the iron component of iron 
formation include photosynthetic oxygen 
production, anoxygenic photosynthesis, abi-
otic photochemistry, and chemoautotrophy 
using Fe(II) as an electron donor. The ori-
gin and mechanism of silica precipitation in 
these deposits have received less attention. 
Here we present a conceptual model of iron 
formation that offers insight into the deposi-
tion of silica. The model hinges on the pro-
clivity of dissolved silica to adsorb onto the 
hydrous surfaces of ferric oxides. Soluble 
ferrous iron is oxidized in the surface ocean 
to form ferric hydroxides, which precipitate. 
Fe(OH)

3 binds silica and sinks from the sur-
face ocean along with organic matter, shut-
tling silica to basinal waters and sediments. 
Fe(III) respiration in the sediments returns 
the majority of iron to the water column 

but also generates considerable alkalinity 
in pore waters, driving precipitation of sid-
erite from Fe2+ and respiration-infl uenced 
CO2. Silica liberated during iron reduction 
becomes concentrated in pore fl uids and is 
ultimately precipitated as diagenetic min-
eral phases. This model explains many of the 
mineralogical, textural, and environmental 
features of Late Archean and earliest Paleo-
proterozoic iron formation.

Keywords: South Africa, iron cycle, banded 
iron formation, chert, Transvaal, Kuruman.

INTRODUCTION

Iron formation is a conspicuous and enig-
matic rock type common in early Earth history. 
A vast literature exists on the topic of Precam-
brian iron formations (far greater than we can 
directly acknowledge here), and many concepts 
advanced herein were forecast in previous stud-
ies. For the interested reader, an illuminating 
cross section of common observations and per-
sistent questions can be found in the following: 
James (1954), Lepp and Goldich (1964), Tren-
dall and Blockley (1970), Beukes (1973), Tren-
dall and Morris (1983, and chapters therein), 
Beukes and Klein (1992), Trendall (2002), 
Klein (2005), and Clout and Simonson (2005). 
The origin and nature of iron formation have 
captured a wide spectrum of scientifi c inter-
est, including investigation of the enrichment 
processes that gave rise to large, economically 
viable ore bodies (Morris, 1980; Morris et al., 
1980), potential origins of low velocity seismic 
zones at the core-mantle boundary (Dobson and 
Brodholt, 2005), secular trends in the oxidation-
reduction potential of the oceans and atmo-
sphere (Macgregor, 1927; Cloud, 1968), and the 
biological factors, both proximal and distal, that 
fi gured in iron deposition (Harder, 1919; Cloud, 

1973; Hartman, 1984; Walker, 1987; Brown et 
al., 1995; Konhauser et al., 2002).

Much of the previous intellectual focus has 
been directed at understanding the sources, trans-
port, and precipitation of iron-bearing minerals, 
with somewhat less attention having been paid 
to the nature and origin of silica in iron forma-
tion. Here we explore the processes responsible 
for concentrating silica in basinal environments, 
as such processes should provide clues to, and be 
congruent with, other aspects of the origin and 
nature of iron formation. We report observations 
from deepwater chert and iron formation hosted 
within a Late Archean carbonate platform in the 
Northern Cape Province, South Africa. Using 
these and other observations of Late Archean 
and early Paleoproterozoic iron formation, we 
then develop a conceptual model for the depo-
sition of iron formation that describes effi cient 
shuttling of silica to deepwater sedimentary 
environments by the (biologically infl uenced) 
iron cycle. If correct, this model provides addi-
tional insight into the geobiology of the Archean 
Eon, a time for which the fossil record offers 
limited biological resolution.

IRON IN IRON FORMATIONS

Often defi ned as derived from chemical 
sediments, thinly bedded or laminated, with 
an anomalously high iron mineral content, and 
containing layers rich in chert, iron formation 
is in effect a uniquely Precambrian rock type 
(James, 1954; Trendall, 1983; Klein, 2005). 
Iron formations represent a style of sedimen-
tation for which clear modern analogs do not 
exist (at least at a similar scale). Ideas concern-
ing their origin are therefore fundamentally 
derived from a combination of fi rst-principles 
inferences about iron- and silica-rich aqueous 
systems and observations of the mineralogies, 
textures, and geological relationships of iron 
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formations themselves. A number of hypoth-
eses address the unique conditions of Archean 
and Proterozoic iron formation deposition. An 
accepted global theory of iron formation depo-
sition is still lacking, however; and, indeed, it is 
unclear whether the diversity of iron formation 
types would ever accommodate such a theory 
(Simonson, 2003). Nonetheless, there are com-
mon threads to many hypotheses.

The ultimate source of Fe is commonly 
linked to increased regional or global, seafl oor 
basaltic volcanism (e.g., Isley, 1995; Barley et 
al., 1997; Isley and Abbott, 1999; Barley et al., 
2005), or changes in the composition of mid-
ocean-ridge hydrothermal systems (Kump and 
Seyfried, 2005). Many banded iron formations 
demonstrate rare earth and trace element dis-
tributions consistent with a high-temperature 
hydrothermal origin of metal ions (Jacobsen 
and Pimentel-Klose, 1988; Derry and Jacob-
sen, 1990; Klein and Beukes, 1992; Bau and 
Möller, 1993).

Another common assumption is that the 
oceans (at least at depth) were anoxic and there-
fore capable of transporting and concentrating 
Fe(II) dissolved in seawater (e.g., Cloud, 1968; 
Holland, 1973; Drever, 1974). Precipitation of 
iron minerals may have occurred either directly 
from anoxic seawater (forming siderite and 
Fe[II]-silicates) or following water column 
oxidation to ferric hydroxides (forming precur-
sors to hematite and jasper) (Lepp and Goldich, 
1964; Ewers, 1983; Beukes and Klein, 1992). 
Considerable attention has been given to the 
mechanisms responsible for ferrous iron oxida-
tion, and several congruent possibilities exist. 
The primary oxidant may have been molecular 
oxygen (O

2
), ultimately derived from oxygenic 

photosynthesis, which reacted with soluble 
ferrous iron either abiotically (equation 1), or 
via chemoautotrophy (equation 2) (Lepp and 
Goldich, 1964; Cloud, 1968; Cloud, 1973; 
Emerson and Revsbech, 1994; Konhauser et 
al., 2002):

4Fe O 10H O 4Fe(OH) 8H( )
2

2 2 3aq
+ ++ + ⎯ →⎯ + ; (1)

12Fe O 32H O( )
2

2 2aq
+ + + ⎯ →⎯

12Fe(OH) 2CH O 24H3 2
++ + . (2)

It has also been suggested that abiotic photo-
chemical reactions were responsible for the oxi-
dation of soluble Fe(II) (equation 3), using elec-
trons from iron to reduce protons (from water) 
to hydrogen (Cairns-Smith, 1978; Braterman et 
al., 1983; Braterman et al., 1984):

2Fe 6H O 2Fe(OH) H 4H( )
2

2
h

3 2aq
v+ ++ ⎯ →⎯ + + . (3)

Finally, the discovery of anoxygenic photo-
synthesis with iron as a primary electron donor 
(Widdel et al., 1993; Ehrenreich and Widdel, 
1994) gave concrete support to previous ideas 
that the biological oxidation of iron might occur 
in the absence of molecular oxygen, requiring 
only photocatalysis (equation 4) (Garrels et 
al., 1973; Baur, 1978; Hartman, 1984; Walker, 
1987):

4Fe CO 11H O( )
2+

2 2
h

aq
v+ + ⎯ →⎯

4Fe(OH) CH O 8H3 2+ + +. (4)

Experiments and calculations of ferrous oxi-
dation rates suggest that this microbial process 
(were it present) would have been suffi cient 
to account for the sedimentary ferric iron fl ux 
required to produce large iron formations (Kon-
hauser et al., 2002; Kappler et al., 2005; Kon-
hauser et al., 2007b). In addition, molecular data 
from comparative biology imply that this type 
of photosynthesis (equation 4) was ancestral to 
oxygen-evolving cyanobacterial photosynthe-
sis (Xiong et al., 2000) and thus may have been 
prevalent in the oceans before cyanobacteria 
rose to ecological prominence. Furthermore, in 
the absence of oxygenic photosynthesis, Fe(II) 
would have been the most abundant source of 
electrons for autotrophy (Walker and Brimble-
combe, 1985; Kharecha et al., 2005; Canfi eld et 
al., 2006). It is critical that, in principle, the oxi-
dation of ferrous iron does not require the pres-
ence of molecular oxygen in the environment. 
It is not yet clear whether oxygenic photosyn-
thesis was present in Late Archean oceans; lipid 
biomarkers (if indigenous) suggest this was the 
case (Brocks et al., 2003a, b; but see Fischer 
et al., 2005, and Rashby et al., 2007), as do 
interpretations of lacustrine stromatolites from 
Western Australia (Buick, 1992). In general, 
however, the microfossil and stromatolite fossil 
records are equivocal (Knoll, 1996; Grotzinger 
and Knoll, 1999), and regardless of how biolog-
ical proxies are interpreted, rock-based proxies 
suggest that very little if any O

2
 was present in 

the atmosphere or oceans (atmospheric O
2
 mix-

ing ratio << 10−5) (Rye and Holland, 1998; Ras-
mussen and Buick, 1999; Farquhar et al., 2000; 
Pavlov and Kasting, 2002; Ono et al., 2003; 
Bekker et al., 2004; Frimmel, 2005). Although 
limited during Late Archean time, oxygen 
appears to have been freely available in the 
atmosphere when the younger Paleoproterozoic 
(ca. 1900 Ma) circum–Superior Province and 
Nabberu Basin iron formations were deposited, 
and it may have played an important role in their 
deposition (Beukes and Klein, 1992). Here, our 
primary efforts are directed at understanding 
depositional processes (including ferrous iron 

oxidation) of iron formations present in Late 
Archean successions, particularly the Trans-
vaal Supergroup of South Africa; however, we 
also revisit the distinction between older iron 
formations and those deposited ca. 1900 Ma, 
as their differences may record secular change 
in the chemical composition of the oceans and 
atmosphere.

SILICA IN IRON FORMATIONS

Although iron formations constitute the major 
crustal repositories of concentrated iron, they 
also contain a substantial proportion of silica, 
in the form of chert. Iron formations generally 
incorporate >15 wt% total Fe (on average 30 
wt%), but commonly have silica concentrations 
of >40 wt% (Klein, 2005). The source of silica 
must, like iron, ultimately derive from either low 
or high temperature rock weathering. Hamade 
et al. (2003) argued that Ge/Si data from iron 
formation of the Dales Gorge Member, Ham-
ersley Group, require that the silica be sourced 
from low temperature continental weathering, in 
contrast to the iron, which was hydrothermally 
derived. The Precambrian oceans may have 
been close to saturation with respect to amor-
phous silica (Siever, 1992), and it has often been 
suggested that chert precipitated as a result of 
evaporative concentration (e.g., Trendall and 
Blockley, 1970; Drever, 1974; Garrels, 1987). 
The banding in iron formation was therefore 
argued to refl ect times when ocean basins alter-
nated between chert and iron mineral precipita-
tion, perhaps refl ecting climate variation, micro-
bial blooms (e.g., Trendall and Blockley, 1970; 
Ewers and Morris, 1981), or, possibly, quasi-
continuous background silica precipitation, 
with episodic deposition of iron derived from 
deep-ocean mixing (Hamade et al., 2003). Still 
others have proposed coprecipitation of iron and 
silica either by microbes (LaBerge et al., 1987) 
or abiotically (Ewers, 1983). Regardless of the 
mechanism responsible for concentrating silica 
in environments undergoing iron formation 
deposition, sedimentological observations make 
it clear that much of the chert formed during 
diagenesis of precursor sediments (Trendall and 
Blockley, 1970; Dimroth, 1976; Beukes, 1984; 
Simonson, 2003; Krapež et al., 2003).

Diagenetic chert deposition is common in 
rock successions of all ages; however, in stark 
contrast to younger Precambrian deposits char-
acterized by peritidal silicifi cation (Maliva 
et al., 1989), many Late Archean cherts were 
precipitated along with iron-bearing minerals 
in deepwater sedimentary environments. On 
a fundamental level, this implies that the Late 
Archean cycles of silica and iron were coupled 
in a fashion unseen in younger times.
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SECULAR TRENDS IN SILICA 
SEDIMENTATION

By mass fl ux, the silica cycle is one of the 
most important major element cycles intersect-
ing the fl uid Earth, and although silica does not 
undergo any redox transformations, it plays 
a key role in the acid-base chemistry of the 
oceans. A primary product of silicate weather-
ing, silicic acid is perpetually delivered to the 
oceans. As long as some proportion of the cat-
ions carried along with silicic acid depart the 
oceans as carbonate salts (Walker et al., 1981), a 
supposition supported by the ubiquity of marine 
carbonates in the geologic record, silica is left 
behind to precipitate as chert. Chert commonly 
has a diagenetic origin wherever it is found in the 
sedimentary record. In many rock successions, 
amorphous silica was either redistributed intra-
formationally or precipitated directly to form 
chert nodules and beds during early diagenesis, 
and the paleoenvironmental distribution of early 
diagenetic chert closely refl ects the processes 
that originally introduced silica to the sediments 
(e.g., Maliva and Siever, 1989; Knauth, 1994). 
The style of chert sedimentation has not been 
uniform throughout Earth history (Siever, 1957); 
rather, secular trends in the facies distribution of 
early diagenetic chert reveal the dynamic evolu-
tion of the marine silica cycle (Fig. 1) (Maliva 
et al., 1989).

Throughout the Phanerozoic Eon, silica 
deposition has largely been mediated by biol-
ogy. Secular changes in the loci of Phanero-
zoic chert deposition refl ect the evolution and 
ecology of silicifying organisms (Maliva et al., 
1989; Schubert et al., 1997; Kidder and Erwin, 
2001; Kidder and Mumma, 2003). In modern 
ocean basins, diatoms quantitatively control the 
removal of silica, maintaining silica concentra-
tions in the oceans (surface water generally <2 
μM, deep water ~100 μM) far below saturation 
with respect to amorphous silica (~1000 μM). 
Approximately 85% of this silica is removed 
to abyssal sedimentary environments, with 
the remainder on continental shelves (Tréguer 
et al., 1995). The abundance of pelagic and 
continental-margin bedded cherts suggests 
that diatoms have controlled silica deposition 
since their radiation in the Late Cretaceous to 
Paleogene (Kooistra et al., 2007). Prior to the 
radiation of diatoms, siliceous sponges and 
radiolarians sequestered silica into subtidal 
continental shelf and open ocean sedimentary 
environments (Maliva et al., 1989). Pelagic and 
hemipelagic cherts appear in similar context, 
whether constructed by diatoms or radiolarians. 
Such cherts are ultimately precipitated diage-
netically by local remobilization of biogenic 
silica (Murray et al., 1992a, b; Bohrmann et al., 

1994), but the proximal fl ux of silica to deep-
water environments is provided by sedimenta-
tion of diatom frustules, radiolarian tests, and, 
to a lesser extent, sponge spicules. In slight 
contrast with Cenozoic deposits, middle to late 
Paleozoic and Mesozoic pelagic cherts appear 
somewhat less commonly, and nodular chert in 
subtidal shelf and platform sediments is more 
abundant, presumably refl ecting the greater 
abundance and infl uence of shallow-water sili-
ceous sponges relative to today (Maliva et al., 
1989; Maldonado et al., 1999). Despite these 
relatively subtle changes, siliceous skeletons 
provided a major removal process for seawater 
silica during much of Phanerozoic time. In con-
sequence, the facies distribution of nodular and 
bedded cherts commonly refl ects the ecology 

of silica-secreting organisms (Fig. 1) (Maliva 
et al., 1989).

In the Precambrian marine silica cycle, quan-
titatively signifi cant skeletal sinks were absent 
(Siever, 1957; Perry and Lefticariu, 2003). In 
the absence of skeletal removal, oceanic sil-
ica concentrations were considerably higher, 
perhaps close to amorphous silica saturation 
(Siever, 1991, 1992), and the process of removal 
was localized to the margins of the oceans, as 
indicated by the prevalence of peritidal chert in 
Proterozoic carbonate successions (Maliva et al., 
1989; Maliva, 2001; Maliva et al., 2005). Com-
monly silicifi ed lithologies include stromato-
lites, oolites and other grainstones, and intrafor-
mational conglomerates (which commonly mark 
sequence-boundary exposure surfaces).  Peritidal 
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cherts commonly originated by direct pore fl uid 
precipitation and/or carbonate replacement 
during early diagenesis, preserving ghosts and 
inclusions of carbonate precursors (Maliva et al., 
2005). Among other things, this early diagenetic 
silicifi cation was responsible for the exceptional 
fossil preservation in Proterozoic cherts (e.g., 
Knoll, 1985; Knoll et al., 1991). Although the 
exact mechanism of replacement and precipita-
tion is still not well understood (Knauth, 1994), 
the abundance of early diagenetic silicifi cation 
in tidal fl at environments, and a relative paucity 
of chert in distal facies, support the idea that 
evaporative processes played a principal role in 
concentrating and depositing silica in the shal-
lowest parts of the oceans (Maliva et al., 1989; 
Maliva et al., 2005). Such shallow water cherts 
are common in Precambrian carbonates of all 
ages, largely disappearing only with the radia-
tions of sponges and radiolarians in the early 
Paleozoic (Fig. 1) (Maliva et al., 1989; Kidder 
and Mumma, 2003). Offshore subtidal cherts 
are less common in the Proterozoic, and infre-
quently preserve microfossils (Maliva et al., 
1989, 2005). Pelagic and hemipelagic cherts 
analogous to Phanerozoic radiolarian or diatom 
bedded cherts are rare or absent (Siever, 1991). 
Indeed, for over two billion years of Earth his-
tory there are only two known exceptions that, 
in essence, prove the rule: the Discovery Chert, 
a silicifi ed basinal shale of Mesoproterozoic age 
(Buick and Knoll, 1999), and the Ediacaran–
Cambrian boundary silicilyte from the South 
Oman Salt Basin (e.g., Amthor et al., 2005). For 
the earlier Precambrian, however, it appears that 
depositional patterns were different.

From the standpoint of typical Precambrian 
chert sedimentation, Archean and Paleoprotero-
zoic banded iron formations are unusual (Fig. 1) 
(Siever, 1991; Perry and Lefticariu, 2003; Maliva 
et al., 2005). Late Archean and early Paleopro-
terozoic iron formations, such as the well-stud-
ied examples from the Transvaal Supergroup 
and Hamersley basin, are commonly recognized 
as deepwater basinal deposits (e.g., Beukes, 
1984; Beukes and Klein, 1992; Blake and Bar-
ley, 1992; Krapež et al., 2003). In addition to 
the chert contained within iron formation sensu 
stricto, deepwater nodular and bedded chert is 
also prevalent in adjacent basinal rock types (i.e., 
deepwater shales, carbonates, and microbialites) 
(e.g., Beukes, 1987; Krapež et al, 2003; Pick-
ard et al., 2004). This facies distribution implies 
that evaporative concentration is an unlikely 
mechanism for their origin. Were it not for the 
iron, these deposits might be most similar to the 
deepwater biogenic cherts of the Phanerozoic, 
though for the Archean and Paleoproterozoic 
we cannot call on skeletons to have deposited 
silica in deep basinal settings. A major question 

thus arises: what mechanism was responsible 
for concentrating dissolved silica in deepwater 
sedimentary environments during Archean and 
early Paleoproterozoic time? A reasonable fi rst 
order assumption is that the cycles of iron and 
silica were somehow coupled, but what was the 
nature of their association?

IRON FORMATION AND DEEPWATER 
CHERT IN THE CAMPBELLRAND-
KURUMAN COMPLEX

Some of the most useful insights into the 
deposition of iron formation derive from their 
geological contacts with other rock types (Oja-
kangas, 1983; Simonson, 1985; Hoffman, 1987; 
Pickard et al., 2004). Here we report observa-
tions on the geological context and petrology 
of Late Archean and earliest Paleoproterozoic 
iron formation from the Transvaal Supergroup 
in South Africa.

The South African Transvaal Supergroup 
occurs in two structural basins on the Kaapvaal 
Craton (Griqualand West and Transvaal proper); 
however, the original deposit probably extended 
across the entire 600,000 km2 surface of the cra-
ton (Fig. 2) (Button, 1973; Beukes, 1987; Sum-
ner, 1995). The succession remains fl at lying 
and largely undeformed across the craton, with 
signifi cant deformation limited to areas in close 
proximity to the Bushveld Igneous Complex 
and the fold belt along the western edge of the 
Kaapvaal craton. Metamorphism of the Trans-
vaal Supergroup is generally below greenschist 
facies equivalent (Button, 1973; Miyano and 
Beukes, 1984), with greater alteration only in 
rocks near the Bushveld Complex.

The Transvaal succession rests disconform-
ably atop volcanics and intercalated sedimen-
tary rocks of the 2,714 ± 8 Ma (Armstrong et al., 
2001) Ventersdorp Supergroup. In Griqualand 
West, the Transvaal is divided into three sub-
groups (Fig. 2). The ca. 2650 Ma Schmidtsdrif 
Subgroup (dates inferred from correlation with 
Transvaal Basin equivalents; Barton et al., 1995; 
Walraven and Martini, 1995) consists of mixed 
siliciclastic and carbonate units. The succeeding 
Campbellrand Subgroup (ca. 2588–2520 Ma; 
Barton et al., 1994; Sumner and Bowring, 1996; 
Altermann and Nelson, 1998) circumscribes a 
broad, ~2-km-thick marine platform that origi-
nated as a carbonate ramp, which subsequently 
advanced into a mature, steeply rimmed car-
bonate platform that extended across the entire 
Kaapvaal Craton (Beukes, 1987; Sumner and 
Beukes, 2006). Ultimately the Campbellrand 
Platform drowned following a major tranges-
sion that heralded the onset of major iron for-
mation deposition across the Kaapvaal Craton, 
recorded by the ca. 2460 Ma (Pickard, 2003) 

Kuruman Iron Formation of the Asbestos Hills 
Subgroup. In general, the Campbellrand Plat-
form and Kuruman Iron Formation refl ect the 
passive accumulation of chemical precipitates 
across the Kaapvaal Craton during Late Archean 
time. We refer to these deposits collectively as 
the Campbellrand-Kuruman Complex.

Large-Scale Observations

Previous studies of the gradational transition 
from carbonate platform to iron formation in the 
Campbellrand-Kuruman Complex suggested 
that this pattern refl ects the succession of sedi-
mentary facies in a deepening-upward sequence, 
rather than a secular change in the seawater 
chemistry of the basin (Beukes, 1984, 1987; 
Klein and Beukes, 1989; Beukes et al., 1990; 
Beukes and Klein, 1992; Simonson and Hassler, 
1996; Sumner, 1997). If correct, this implies 
that iron formation was constantly deposited as 
a deepwater facies adjacent to the Campbellrand 
Platform, and only accumulated across the cra-
ton in abundance as rates of carbonate produc-
tion declined and the platform drowned.

To test this interpretation further, we exam-
ined two new diamond drill cores, GKP01 and 
GKF01, collected as a part of the Agouron Drill-
ing Project (Fig. 2). Such cores are exceedingly 
valuable, in part to combat challenges presented 
by pervasive surfi cial oxidation in South Africa 
(often penetrating to depths of >20 m), but also 
to reveal geological relationships that are not 
adequately recorded in outcrop. A segment of 
the ancient platform margin preserved in Gri-
qualand West (northeast of Prieska) connects 
the deepwater (several hundred meters to >1 km 
water depth) slope and basinal facies exposed 
near Prieska to the shallow-water Campbellrand 
carbonate platform. Here, the two cores, GKP01 
and GKF01, intersect the paleogeographic lower 
and upper slope, respectively. Detailed descrip-
tions of the sequence stratigraphy; lithologies; 
sedimentology; and major, minor, and trace ele-
ment geochemistry of the two Agouron cores 
(GKP01 and GKF01) can be found in Schröder 
et al. (2006) and Sumner and Beukes (2006). 
We include data from an additional core, BH1-
Sacha, which captures platform-top, shallow-
water facies for comparison. Description of the 
sedimentology and stratigraphy of BH1-Sacha 
can be found in Altermann and Siegfried (1997). 
Carbon isotopic analysis and discussion of the 
stratigraphy of all three cores can be found in 
Fischer et al. (2008).

The sedimentology, sequence stratigraphy, 
and asymmetrical occurrence of iron forma-
tion across the platform margin all support the 
interpretation of iron formation as a deepwa-
ter sediment-starved facies occurring distal to 
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platform-derived sediment (including shales) 
(Fig. 3). Throughout the Campbellrand-Kuru-
man Complex, iron formation is thinly bed-
ded or laminated and contains no orbital bed 
forms. Lithologies that commonly interfi nger 
in conformable contact with iron formation 
include shales, carbonate turbidite grainstones, 
plumose and fenestral microbialites, laminated 
microbialites, and bedded chert. GKP01 and 
GKF01 record the familiar gradational strati-
graphic pattern of carbonates giving way to 
shales and, eventually, iron formation (Fig. 3, 
<400 m depth). In both cores an increasing 
proportion of nodular and bedded chert accom-
panies this upsection trend, which is reason-
ably recognized as a deepening upward suc-
cession (Schröder et al., 2006). In the easterly 
sections (e.g., BH1-Sacha), where the platform 
developed, iron formation appears only twice 
in the stratigraphic succession. The thick Kuru-
man Iron Formation (subsequently eroded and 
replaced by Permian tillites in BH1-Sacha, but 
present elsewhere in Griqualand West) was 
deposited after drowning of the Campbellrand 
Subgroup carbonate platform. In addition, a 

thin iron formation unit, the Kamden Member, 
occurs lower in the succession, dividing the 
Campbellrand Platform. This marker unit is 
interesting because it was deposited as a result 
of an earlier strong transgression (and major 
sequence boundary; Beukes, 1987; Altermann 
and Siegfried, 1997; Schröder et al., 2006; 
Sumner and Beukes, 2006) across the plat-
form. Although carbonate precipitation would 
eventually recover, the Kamden event shares 
many features with the terminal Campbellrand 
drowning, albeit at a smaller scale. This is in 
contrast to cores GKP01 and GKF01 in which 
thinly bedded chert and iron formation are much 
more common (particularly in the lower slope 
of GKP01) and are developed preferentially at 
sequence-stratigraphic-boundary (fl ooding or 
hiatal) surfaces (Schröder et al., 2006).

Figure 4 summarizes the relationships among 
iron-poor carbonates, iron-rich carbonates and 
shales, and iron formation in a southwest-trend-
ing cross section across the Campbellrand-Kuru-
man Complex platform margin in Griqualand 
West, updated from Beukes (1987). Shallow-
water carbonates tend to be iron poor in contrast 

with deepwater carbonates, which contain sub-
stantial iron. These data support the commonly 
held view that during Late Archean time, iron 
was effectively removed from surface waters, 
presumably by oxidation processes, while the 
deep oceans maintained a reservoir of dissolved 
iron (e.g., Klein and Beukes, 1989; Beukes and 
Klein, 1992; Simonson and Hassler, 1996; Kap-
pler et al., 2005). If ferrous iron was the primary 
electron donor for autotrophy in Archean oceans 
(e.g., Widdel et al., 1993), primary production 
in essence must have been electron limited (e.g., 
Canfi eld et al., 2006). Interestingly, manganese 
does not share this same distribution (Beukes, 
1987); rather, it was quantitatively removed as 
Mn(II) on shallow-water carbonates. Because 
the standard potential of Mn2+/MnO

2
 requires 

a strong oxidant (such as oxygen or nitrate), it 
suggests that although surface ocean environ-
ments were capable of effi ciently oxidizing iron, 
they did not commonly oxidize Mn(II).

Sequence stratigraphic analysis and platform 
architecture indicate that Campbellrand-Kuru-
man Complex iron formation was deposited in 
a hemipelagic setting under sediment-starved 
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GKP01, GKF01, and BH1-Sacha. 
Nomenclature of stratigraphic units 
in Griqualand West is depicted 
alongside core GKP01. The different 
cores were aligned using a sequence 
stratigraphic datum, the fl ooding of 
the Boomplaas Formation (a thin 
carbonate platform in the Schmidts-
drif Subgroup). An additional line of 
correlation was drawn connecting the 
Kamden Member iron formation of 
the Lower Nauga–Reivilo Formation, 
a robust lithologic marker present in 
all three cores. All three cores exhibit 
an erosional unconformity where the 
upper Transvaal Supergroup was 
removed, followed by the deposi-
tion of Permian tillites of the Karoo 
Supergroup. In GKP01 and GKF01 
the lower Kuruman Iron Formation 
is still preserved; however, in BH1-
Sacha the entire Kuruman Iron For-
mation was excised, and the young 
tillites rest directly on the top of the 
Campbellrand Subgroup. Included 
are the relative distances between the 
three cores projected onto a section 
line (e.g., Fig. 2, A to A′) orthogonal to 
the platform margin.
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conditions, and likely represents typical deep-
water sedimentation in this Late Archean and 
earliest Proterozoic ocean basin (Beukes, 1984, 
1987). Ultimately, it was only the cessation of 
carbonate precipitation coupled with ongo-
ing subsidence that allowed these deposits to 
expand across the Kaapvaal Craton.

Small-Scale Observations

All iron formations have undergone strong 
diagenetic (and in most cases, metamorphic) 
transformations, altering both mineralogy and 
textural relationships. The challenge therefore 
is to infer as much as possible about the state 
of iron formation at its moment of deposition, 
given the relationships between extant minerals 
and textures.

In contrast with outcrop and quarry expo-
sures, the Campbellrand-Kuruman Complex 
iron formations observed in cores contain a high 
proportion of Fe(II)-bearing minerals (Figs. 5A 
and 5B). This primarily refl ects diagenetic pro-
cesses of oxidative weathering that attacked out-
crops, and ore-forming enrichment; however, 
Klein and Beukes (1989) indicated that a true 
environmental trend occurred in the oxidation 
state of the Campbellrand-Kuruman Complex 
iron formation, with iron oxides more common 
with increasing distance (and water depth) from 
the platform margin.

The most conspicuous sedimentary struc-
tures in the iron formation are submillimeter- to 
millimeter-scale laminations, and oblate chert 
nodules and beds oriented parallel or subpar-
allel to bedding (Figs. 5F–H) (Beukes, 1984). 
Fine-grained hematite and siderite spheroids 
defi ne laminae in iron-rich beds, and these 
laminations can be traced through chert, com-
monly displaying differential compaction, some 
as high as 80%–90% (Beukes, 1984; Simonson, 
2003; Clout and Simonson, 2005). By follow-
ing many of the mesobanded chert beds along 
strike, one can commonly demonstrate that they 
are nodular in origin (Beukes, 1984). These 
features strongly imply that silica was trans-
ported to basinal sediments and then remobi-
lized and precipitated during early diagenesis, 
preserving pore fl uid and replacing precursor 
sediments. Early diagenetic chert is also pres-
ent in adjacent deepwater lithologies as oblate 
nodules and lenses, spherical blebs, and rip-up 
clasts (Fig. 5F). Rip-ups suggest that silicifi ca-
tion occurred at or near the seafl oor, creating 
hardgrounds (Krapež et al., 2003). Not all chert 
in the basinal Campbellrand-Kuruman Com-
plex formed during early diagenesis. Late stage 
(post compaction) silicifi cation created the chert 
matrix common to iron formation and many 
basinal mudstones.

Typical minerals in the GKP01 and GKF01 
iron formation include siderite, iron silicates 

(such as greenalite), and chert. The most com-
mon oxide mineral is magnetite (mixed valence); 
in general, hematite (and jasper) is uncommon. 
Much of the magnetite and ankerite present is 
euhedral and displays discordant relationships 
both with indigenous kerogen and with hema-
tite and siderite laminae (Beukes et al., 1990). 
Wavy-bedded magnetite is also common and 
cuts across primary bedding (Fig. 5E). On occa-
sion, hematite lamination within early diage-
netic chert nodules can be traced into magnetite 
outside the nodule (Beukes, 1984). This indi-
cates that much of the magnetite mineralization 
occurred by replacement during late diagenesis-
metamorphism (Han, 1978; Beukes, 1984; Beu-
kes et al., 1990). Of the minerals present in the 
Campbellrand-Kuruman Complex iron forma-
tion, hematite, siderite, iron silicates (greenalite), 
and chert all display petrographic textures that 
imply their presence in the sediment during early 
diagenesis (Figs. 5C and 5D). These minerals 
defi ne a disequilibrium assemblage that cannot 
easily be explained by precipitation from a uni-
form fl uid (Krapež et al., 2003). In addition, the 
carbon isotopic composition of these siderites 
is highly variable, from ~0‰ (VPDB [Vienna 
Peedee belemnite]) to −15‰, in contrast to both 
shallow- and deepwater carbonate precipitates 
(Perry and Tan, 1972; Beukes et al., 1990; Kauf-
man et al., 1990; Kaufman et al., 1996; Fischer 
et al., 2008). This suggests that siderite at least 
was deposited during early diagenesis from 
pore fl uids infl uenced by the remineralization 
of organic matter, likely involving dissimila-
tory iron reduction (Walker, 1984; Fischer et al., 
2008). This interpretation is supported by iron 
isotope ratios of siderite from Late Archean and 
early Paleoproterozoic iron formations in South 
Africa and Western Australia (Yamaguchi et al., 
2005; Johnson et al., 2008).

Iron Formation Banding

Conspicuous banding has been recognized in 
iron formation at several different scale lengths 
(e.g., Trendall and Blockley, 1970). Each 
of these types of banding is observed in the 
Campbellrand-Kuruman Complex iron forma-
tions. Macrobanding occurs at a scale of meters 
and is defi ned by the interfi ngering of iron for-
mation with shales, carbonate turbidites, and 
other platform-derived sediment. This style of 
banding can be understood in a sequence strati-
graphic context. It was likely created by the epi-
sodic delivery during lowstand of platform and 
slope derived sediment into basinal areas that 
accumulated iron formation (Fig. 3, GKP01 and 
GKF01 <350 m) (e.g., Pickard et al., 2004). At 
the other end of the size spectrum, microband-
ing (commonly submillimeter to millimeter 
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Figure 4. A northeast-southwest–trending cross section across the Campbellrand Platform 
margin (Fig. 2, A to A′) shows relationships between iron-poor carbonates, iron-rich carbon-
ates (and shales), and iron formation. Modifi ed from Beukes (1987), integrating observations 
from this study along with additional data (Klein and Beukes, 1989; Schröder et al., 2006; 
Sumner and Beukes, 2006). The division between iron rich and iron poor is ~1 wt% FeO.
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Figure 5. Examples of iron formation and deepwater chert in the Campbellrand-Kuruman Complex. (A) Typical banded iron formation in 
core. Siderite-magnetite-chert with rare iron silicate–rich laminations. Quarter core is ~2.5 cm wide. (B) Kuruman Iron Formation in outcrop. 
(C, D) Uncommon hematite and jasper-rich microbands in cores GKP01 and GKF01 preserved in chert. Laminae grade laterally from iron 
oxides into siderite and iron silicates. Core sample is 47.6 mm in diameter. (E) Wavy magnetite laminae cut across millimeter-scale primary 
bedding. Core sample is 70 mm in diameter. (F) Early diagenetic chert nodules in shale. The black nodules are thinly outlined by pyrites that 
postdate the chert. (G, H) Early diagenetic chert nodules in iron formation; bounding laminations display differential compaction.
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scale) may refl ect episodic deposition from 
the water column (e.g., Trendall and Blockley, 
1970), resedimentation of grains formed else-
where (Krapež et al., 2003), or both (Beukes, 
1984; Beukes et al., 1990). Each microband 
would, therefore, represent a single deposi-
tional event. What is clear, however, is that the 
microbands are mineralogically heterogeneous, 
both laterally and vertically (Figs. 5C and 5D). 
Thus, whereas microbands display textures con-
sistent with the physical processes of sedimen-
tation, their chemistry was signifi cantly altered 
during diagenesis. Between these two extremes 
is mesobanding, which is commonly defi ned by 
centimeter-scale chert beds. As noted above, 
these chert mesobands can be demonstrated to 
have formed during early diagenesis, at and/or 
below the seafl oor (Beukes, 1984; Krapež et 
al., 2003). In general, the petrographic textures 
displayed by silica in Campbellrand-Kuruman 
Complex iron formation and adjacent sedi-
mentary lithologies reveal a diagenetic origin. 
As precursor sediments that gave rise to iron 
formation must have contained a substantial 
proportion of silica, hypotheses which hold that 
ocean basins switched back and forth between 
iron and silica deposition are not required.

CONCEPTUAL MODEL OF LATE 
ARCHEAN IRON FORMATION 
DEPOSITION

As mentioned above, there are many ideas 
concerning the origin of iron formation. In this 
section we propose a conceptual model that cou-
ples the anomalous deepwater silica to the min-
eralogical, textural, and environmental features 
of iron formation. Following suggestions made 
by Ewers (1983) based on the work and ideas 
of Harder (1964, 1965), and Harder and Flehmig 
(1970), our model hinges on the proclivity of 
dissolved silica to bind to ferric hydroxides.

Many experiments have demonstrated that 
dissolved silica exhibits a strong affi nity for 
the hydrous surfaces of trivalent metal oxides, 
including ferric hydroxides (Okamoto et al., 
1957; Huang, 1975; Sigg and Stumm, 1981; 
Swedlund and Webster, 1999; Davis et al., 2001; 
Davis et al., 2002; Fein et al., 2002; Yee et al., 
2003). Sorption occurs by ligand exchange and 
thus depends on silica concentration, pH, and 
the number of available =FeOH sites, features 
that are not well constrained for ancient con-
ditions. It is important, however, that (1) silica 
readily adsorbs to ferric hydroxides across a 
wide range of conditions, up to and above 
equimolar ratios (Davis et al., 2002), and (2) 
ferric hydroxides will tend to bind a high pro-
portion of available silica even in solutions sig-
nifi cantly undersaturated with respect to silica 

(e.g., Fein et al., 2002). Much of the interest in 
this process has focused on the effect that silica 
has on hindering the sorption of other anions of 
interest (e.g., arsenate; Davis et al., 2001). For 
example, Konhauser et al. (2007a) have argued 
that during Archean time, silica adsorption 
on iron oxyhydroxides led to the competitive 
exclusion of phosphate. Here we emphasize that 
silica adsorption on ferric hydroxides may have 
been an important mechanism for sequestering 
silica to deepwater sediments along with iron in 
Late Archean ocean basins (Fig. 6).

A diagram of our model is shown in Figure 6. 
We assume that the oceans were anoxic and 
capable of transporting and concentrating fer-
rous iron. Whenever waters carrying Fe2+ inter-
sected the photic zone, the iron was oxidized. 
The mechanism of oxidation can, in principle, 
be any of those discussed previously as long as 
they effectively transduce electrons from iron 
to organic matter (in order to drive subsequent 
iron respiration in the sediments). This could 
be abiotic photochemical oxidation, if the H

2
 

produced were fi xed into organic matter, or 
possibly O

2
 from oxygenic photosynthesis, as 

long as the oxygen was effectively consumed 
by iron oxidation. Though current data are 
insuffi cient to rule it out, we do not currently 
favor oxygenic photosynthesis, in part because 
it is not supported by evidence for Mn2+ in sur-
face waters, but also because the oxidant pro-
duced (O

2
) is poorly soluble in seawater and 

will tend to escape to the atmosphere, confl ict-

ing with other geological data and hindering 
the effective transduction of electrons. For the 
purpose of this discussion we consider the oxi-
dation by anoxygenic photosynthesis, wherein 
CO

2
 is fi xed into organic matter using electrons 

from ferrous iron (equation 4). Assuming that 
the pH of seawater was not strongly acidic (i.e., 
was >4), ferric iron produced by this reaction 
would rapidly undergo hydrolysis and pre-
cipitate as ferric hydroxides. Dissolved silica 
readily adsorbs to the ferric hydroxide surface, 
generating siliceous ferric hydroxide particles 
that sink from surface ocean waters to the sedi-
ments along with organic matter.

The mineralogy and carbon isotopic compo-
sition of siderite indicate that processes within 
the sediments must both reduce iron back to 
Fe(II) and oxidize organic matter. Aerobic respi-
ration would have been unlikely in these anoxic 
basinal settings; moreover, it cannot account for 
the reduction of ferric iron. Dissimilatory iron 
reduction is an attractive process for explaining 
these coupled observations. In addition, biologi-
cal iron reduction may have been instrumental 
in the transformation and precipitation of other 
mineral phases during early diagenesis. In the 
sediments (and likely in the water column dur-
ing transport) iron respiration takes place. As the 
ferric oxides undergo reductive dissolution, the 
silica is liberated. A signifi cant proportion of 
these products likely diffuse back to the water 
column, where they are advected to the sur-
face during upwelling to begin the cycle again. 
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Figure 6. Conceptual model of Late Archean and earliest Paleoproterozoic iron formation depo-
sition, derived from the biological oceanic iron cycle. See text for description and explanation.
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 Sediments that contain insuffi cient organic mat-
ter to reduce the siliceous ferric hydroxides form 
the precursors to hematite iron formation and 
jasper. Because iron reduction is a strong alka-
linity pump, it will tend to drive the precipitation 
of siderite (a rather insoluble carbonate salt). 
This siderite will therefore carry some isotopic 
memory of the organic carbon used to reduce the 
oxidized iron. Silica and ferrous iron can com-
bine to form early diagenetic iron silicates such 
as greenalite, and dissolved silica can migrate 
locally to form early diagenetic cherts. Addi-
tional pore fl uid silica will likely derive from 
desorption during maturation of unreduced fer-
ric hydroxides to ordered anhydrous minerals.

This model accounts for many critical fea-
tures observed in Campbellrand-Kuruman Com-
plex iron formations, including the mesoscale 
banding, the occurrence and distribution of 
chert in basinal settings, the predominance of 
Fe(II)-bearing minerals, and the carbon isoto-
pic composition of siderite. Additionally, if the 
fl ux of organic matter to the sediment-water 
interface was, like today, depth-dependent, then 
our model also suggests that the accumulation 
of iron formation containing abundant iron 
oxides should be located in the deepest water 
(where sedimentary organic matter is insuffi -
cient to reduce all the iron); this may explain the 
aforementioned distribution observed by Klein 
and Beukes (1989). In this regard, it is interest-
ing to note that in the Campbellrand-Kuruman 
Complex, siderite facies iron formation con-
tains organic carbon concentrations more than 
an order of magnitude higher (with some con-
centrations >0.5 wt%) than oxidized facies iron 
formation (Klein and Beukes, 1989; Beukes et 
al., 1990; Fischer et al., 2008).

SUMMARY AND DISCUSSION

Previous studies of banded iron formation 
focused largely on iron transport, oxidation, and 
mineralization in iron formation, and with good 
reason, because those processes indicate a tran-
sition in the oxidation-reduction potential of the 
oceans. In contrast, we focused on the nature of 
the silica that is so conspicuous in iron forma-
tions. In the context of typical Proterozoic chert 
deposition, the abundant silica in iron formation 
is environmentally unusual and requires expla-
nation. We have proposed a model for the origin 
of Late Archean and earliest Paleoproterozoic 
iron formation with links to the silica cycle. 
The model relies on effi cient shuttling of silica 
to deepwater sedimentary environments by the 
(biological) iron cycle. We conclude that as long 
as iron was oxidized in the surface ocean and 
sank into basinal sedimentary environments, it 
would have acted as an effective agent for deliv-

ering silica to deepwater sedimentary environ-
ments. As Paleoproterozoic ocean basins became 
more oxidizing, the iron cycle collapsed, and the 
major vector responsible for delivering silica to 
deepwater environments was lost. This model 
does not simply explain the occurrence of basi-
nal chert in Late Archean and early Paleopro-
terozoic sedimentary basins; rather, in providing 
a mechanism for deepwater silica deposition, it 
places new constraints on the deposition of iron 
species as well.

In addition to the Transvaal Supergroup, the 
best studied Late Archean and earliest Paleo-
proterozoic iron formations are those from the 
Hamersley Province in Western Australia. Many 
observations reported from these deposits over-
lap with those described herein (Fig. 7) (Becker 
and Clayton, 1972; Baur et al., 1985; Krapež 
et al., 2003; Pickard et al., 2004). Although 
our model was developed explicitly to describe 
deposition of iron formations of the Campbell-
rand-Kuruman Complex, it may more generally 
capture the behavior of the iron cycle and origin 
of iron formation globally in Late Archean and 
early Paleoproterozoic ocean basins. Growing 
iron isotopic data from Late Archean and early 
Proterozoic sedimentary successions support the 
hypothesis of an active and conspicuous biologi-
cal iron cycle (Yamaguchi et al., 2005; Archer 
and Vance, 2006; Johnson et al., 2008). In par-
ticular, the iron cycle favored by Johnson et al. 
(2008) to explain the differences in iron isotope 
ratios between different iron formation miner-
als shares many salient features with the model 
developed here to explain the silica distribution.

In principle, laboratory experiments and 
surface complexation models can suggest the 
expected range of Si:Fe ratios in sedimenting 

particles predicted by our model (e.g., Sigg and 
Stumm, 1981; Davis et al., 2002). The quality of 
such predictions depends on limited experimen-
tal work and our equally limited knowledge of 
the chemical composition of the Late Archean 
and early Paleoproterozoic oceans. Nonetheless, 
given a dissolved SiO

2
 concentration of 60 mg/L 

(Siever, 1992), and assuming that the pH of Late 
Archean and early Paleoproterozoic oceans was 
between 7.5 and 8.5 (Grotzinger and Kasting, 
1993), estimated sorption densities (mol Si/mol 
Fe) fall between 0.85 and 1.0. These estimates 
overlap with, but are, on average, slightly lower 
than the ratios determined from bulk chemistry 
of iron formations (e.g., Klein 2005), which 
integrate data from chert-rich mesobands and 
intervening iron-rich laminations. Given the dif-
ferences in expected behavior of both iron and 
silica during subsequent sedimentary diagenesis, 
however, it is diffi cult to benchmark properly 
these model predictions against ratios obtained 
from diagenetically stabilized iron formation. 
As iron reduction proceeded in sediments, solu-
ble Fe(II) was largely free to diffuse back out of 
the sediments; with dissolved sulfi de concentra-
tions vanishingly low (e.g., Walker and Brimble-
combe, 1985), the only species that could trap it 
quantitatively was carbonate, forming siderite. 
In contrast, the liberated silica, which did not 
undergo reductive dissolution, remained just as 
reactive and may have been preferentially con-
centrated in the sediments.

The complex diagenetic history displayed in 
iron formation and described in our model may 
have implications for the Archean fossil record. 
There are few reports of silicifi ed fossils from 
Late Archean cherts, and described materials 
tend to be poorly preserved (Lanier, 1986; Klein 

Figure 7. Example of early diagenetic chert development from the 
Brockman Iron Formation, Dales Gorge, Western Australia.
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et al., 1987; Lanier, 1986; Altermann and Schopf, 
1995). If iron formation chert was a quantita-
tively important sink for oceanic silica, this may 
have infl uenced the nature, timing, and, there-
fore, the fossil preservation potential of chert 
formation in Late Archean tidal fl at carbonates. 
This is in contrast to peritidal cherts in younger 
Proterozoic successions (e.g., Knoll, 1985), 
which commonly preserve microfossils. That 
stated, silicifi cation of peritidal carbonates in 
the Campbellrand Subgroup did occur—perhaps 
commonly, later in the paragenetic sequence. 
This suggests that silica was present through-
out the water column (in contrast with iron), 
and the sorption of silica onto ferric hydroxides 
was likely limited by available ferric hydroxide–
active sites and not the availability of silica.

The lack of microfossils in Late Archean and 
early Paleoproterozoic iron formation stands in 
stark contrast to younger iron formations, which 
can be extraordinarily fossiliferous (e.g., Barg-
hoorn and Tyler, 1965; Knoll and Simonson, 
1981). This is just one of many features that dis-
tinguish the older Late Archean to earliest Paleo-
proterozoic iron formations from the younger 
circum–Superior Province and Nabberu Basin 
iron formations (Clout and Simonson, 2005). 
The two sets differ in their bulk chemical com-
position, petrologic textures, and depositional 
and tectonic settings. The younger Paleoprotero-
zoic iron formations typically occur on conver-
gent margins, possibly in linear foreland basins 
(Hoffman, 1987; Schneider et al., 2002). These 
formations commonly have a conspicuous shal-
low-water component (the widely recognized 
granular iron formations) that includes stromato-
lites and grainstones with current and orbital bed 
forms. This shallow component is more oxidized, 
containing abundant hematite and jasper, than 
its deepwater, laminated counterparts—just the 
opposite of relationships observed in the Camp-
bellrand-Kuruman Complex. To the degree that 
iron formation deposits betray the location of 
the most abundant environmental oxidants at the 
time of their deposition, the Late Archean and 
earliest Paleoproterozoic examples point to iron 
oxides in deep sedimentary basins, whereas the 
younger iron formations imply O

2
 in the atmo-

sphere and surface waters (Walker, 1987).
Drawn to the cessation of iron formation depo-

sition after ca. 1.8 Ga, Canfi eld (1998) proposed 
that this transition came about as the oceans 
accumulated enough sulfi de to titrate all avail-
able soluble Fe(II) as pyrite (see also Anbar and 
Knoll, 2002). This notwithstanding, we stress 
that iron formations themselves suggest an ear-
lier transition. Coincident (given available time 
constraints) with the appearance of environmen-
tal oxygen ca. 2.4 Ga (Bekker et al., 2004), iron 
formations largely disappear from the geologic 

record only to return later in a pulse ca. 1.9 Ga 
(Fig. 1) (Isley and Abbott, 1999). Whether this 
was associated with a middle Paleoproterozoic 
decline in atmospheric oxygen (e.g., Canfi eld, 
2005) is still unclear. We do know, however, that 
this recursion was not simply a return to condi-
tions like those in Late Archean marine basins. 
The distinctive nature of younger iron forma-
tions documents a world that does not seem to 
have existed earlier.

Given our hypothesis of a ferric hydroxide 
silica shuttle operating in Late Archean ocean 
basins, there are several things that we would 
like to understand better. How, for example, 
might such a process affect the fractionation of 
both rare earth elements (e.g., Köppenkastrop et 
al., 1991) and Ge relative to Si (e.g., Hammond 
et al., 2000; Anders et al., 2003; Pokrovsky et 
al., 2006), and does this require reinterpretation 
of geochemical proxies? Also, how does silica 
adsorption affect rates and mechanisms of bio-
logical iron reduction? Iron-reducing bacteria 
can access and reduce Fe(III) from a wide array 
of hydroxide and clay minerals (Lovley et al., 
2004; Crowe et al., 2007). When grown on a 
ferrihydrite substrate containing 1 and 5 mol% 
silica, Shewanella putrefaciens CN32 exhibited 
no change in iron reduction rate (Kukkadapu et 
al., 2004). Does this hold for higher adsorbed 
silica concentrations? Of the variety of known 
biological iron-reducing mechanisms, does the 
presence of adsorbed silica favor a particular 
strategy? Future work to answer these and other 
questions posed here should provide further 
insight into the origin of iron formation and its 
signifi cance for Archean geobiology.

Today, diatoms are dominant primary produc-
ers, and, as such, the oceanic cycles of silica and 
carbon are tightly bound. The sedimentary record 
of chert indicates that this was not true for most 
of Earth’s history. However, the views of iron 
formation espoused here suggest that, in Late 
Archean and early Paleoproterozoic oceans, the 
cycles of silica and carbon were once coupled in 
a different fashion, with iron as the crucial link.
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