Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties

ERIC P. SHETTLE
ROBERT W. FENN

20 September 1979

Approved for public release; distribution unlimited.
This report has been reviewed by the ESD Information Office (OI) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

[Signature]

Chief Scientist

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.
Aerosol models have been developed for the lower atmosphere. These models are representative of conditions found in rural, urban, and maritime air masses. The changes in the aerosol properties with variations in the relative humidity are discussed. To describe the aerosol optical properties in the extreme of 100 percent relative humidity, several fog models are presented. For each model the coefficients for extinction, scattering, and absorption, the angular scattering distribution, and other optical parameters have been computed for wavelengths between 0.2 and 40 μm. These aerosol models are...
presented together with a review of their experimental basis. The optical properties of these models are discussed and some comparisons of the model with experimental measurements are presented.
Preface

We would like to thank several individuals who helped with this report, in particular: Fred Volz for his advice on the aerosol refractive indices and his general comments on the aerosol models, Frank Gibson for his work in developing the Fog Models, and Barry Siegel for his assistance with the computer programming.
Contents

1. INTRODUCTION 11

2. MODELS FOR THE PHYSICAL PROPERTIES OF THE AEROSOLS 12
 2.1 Model Size Distribution 12
 2.2 Effects of Humidity Variations on Aerosol Properties 14
 2.3 Rural Aerosol Model 16
 2.4 Urban Aerosol Model 19
 2.5 Maritime Aerosol Model 26
 2.6 Tropospheric Model 30
 2.7 Fog Models 33

3. AEROSOL OPTICAL PROPERTIES 35
 3.1 Mie Scattering Calculations 35
 3.2 Aerosol Model Attenuation 36
 3.3 Fog Model Attenuation 46
 3.4 Tables of Aerosol Attenuation 49

4. THE USE OF THE AEROSOL MODELS 86
 4.1 Boundary Layer Models 86
 4.2 Tropospheric Aerosol Model 87
 4.3 Fog Models 87

REFERENCES 89
Illustrations

1. Refractive Index of Marine Aerosol, Water, and Sea Salt 17
2. Refractive Index for the Dry Rural and Urban Aerosol Components 17
3. Aerosol Number Distribution for the Rural Model at Different Relative Humidities With Total Particle Concentrations Fixed at 15,000 cm\(^{-3}\) 20
4. Cumulative Number Density for the Rural Aerosol Model at Different Relative Humidities With Total Particle Concentrations Fixed at 15,000 cm\(^{-3}\) 21
5. Volume Distribution for the Rural Aerosol Model at Different Relative Humidities With the Total Particle Concentrations Fixed at 15,000 cm\(^{-3}\) 21
6. Aerosol Number Distribution for the Maritime Model at Different Relative Humidities With the Total Particle Concentrations Fixed at 4000 cm\(^{-3}\) 27
7. Cumulative Number Density for the Maritime Aerosol Model at Different Relative Humidities With the Total Particle Concentrations Fixed at 4000 cm\(^{-3}\) 27
8. Volume Distribution for the Maritime Aerosol Model at Different Relative Humidities With the Total Particle Concentrations Fixed at 4000 cm\(^{-3}\) 28
9. Aerosol Number Distribution for the Tropospheric Model at Different Relative Humidities With Total Particle Concentrations Fixed at 10,000 cm\(^{-3}\) 31
10. Cumulative Number Density for the Tropospheric Aerosol Model at Different Relative Humidities With Total Particle Concentrations Fixed at 10,000 cm\(^{-3}\) 32
11. Volume Distribution for the Tropospheric Aerosol Model at Different Relative Humidities With the Total Particle Concentrations Fixed at 10,000 cm\(^{-3}\) 32
12. Number Distribution for the Different Fog Models 34
13. Cumulative Number Distribution for the Different Fog Models 34
15. Attenuation Coefficients vs Wavelength for the Rural Aerosols at 50 Percent Relative Humidity 36
16. Attenuation Coefficients vs Wavelength for the Rural Aerosol Models at 95 Percent Relative Humidity 37
17. Extinction Coefficients vs Wavelength for the Rural Aerosol Model for Different Relative Humidities and Constant Number Density of Particles 37
18. Attenuation Coefficients vs Wavelength for the Urban Aerosols at 50 Percent Relative Humidity 38
19. Attenuation Coefficients vs Wavelength for the Urban Aerosols at 95 Percent Relative Humidity 39
20. Extinction Coefficients vs Wavelength for the Urban Aerosol Model for Different Relative Humidities and Constant Number Density of Particles 39
21. Attenuation Coefficients vs Wavelength for the Maritime Aerosol Model at 50 Percent Relative Humidity 40
Illustrations

22. Attenuation Coefficients vs Wavelength for the Maritime Aerosol Model at 95 Percent Relative Humidity
23. Extinction Coefficients vs Wavelength for the Maritime Aerosol Model for Different Relative Humidities and Constant Number Density of Particles
24. Attenuation Coefficients vs Wavelength for the Tropospheric Aerosol Model at 50 Percent Relative Humidity
25. Attenuation Coefficients vs Wavelength for the Tropospheric Aerosol Model at 95 Percent Relative Humidity
26. Extinction Coefficients vs Wavelength for the Tropospheric Aerosol Model for Different Relative Humidities and Constant Number Density of Particles
27. Attenuation Coefficients vs Wavelength; Heavy Advection Fog, Model 1
28. Attenuation Coefficients vs Wavelength; Light to Moderate Advection Fog, Model 2
29. Attenuation Coefficients vs Wavelength; Heavy Radiation Fog, Model 3
30. Attenuation Coefficients vs Wavelength; Light to Moderate Radiation Fog, Model 4
31. Extinction Coefficients vs Wavelength for the Different Fog Models

Tables

1. Characteristics of Aerosol Models of the Lower Atmosphere
2. Mode Radii for the Aerosol Models as a Function of Relative Humidity
3. Refractive Index for the Different Aerosol Components
4. Refractive Index of the Rural Model as a Function of Relative Humidity and Wavelength, (a) Small Rural Aerosols, (b) Large Rural Aerosols
5. Refractive Index of the Urban Model as a Function of Relative Humidity and Wavelength, (a) Small Urban Aerosols, (b) Large Urban Aerosols
6. Refractive Index of the Oceanic Model as a Function of Relative Humidity and Wavelength
7. Size Distribution Parameters of the Fog Models
8. Total Number Density for the Rural Aerosol Model as a Function of Relative Humidity and Meteorological Range
9. Total Number Density for the Urban Aerosol Model as a Function of Relative Humidity and Meteorological Range
10. Total Number Density for the Maritime Aerosol Model as a Function of Relative Humidity and Meteorological Range
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Total Number Density for the Tropospheric Aerosol Model as a Function of Relative Humidity and Meteorological Range</td>
<td>45</td>
</tr>
<tr>
<td>12.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 0% Rural Model</td>
<td>50</td>
</tr>
<tr>
<td>13.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 50% Rural Model</td>
<td>51</td>
</tr>
<tr>
<td>14.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 70% Rural Model</td>
<td>52</td>
</tr>
<tr>
<td>15.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 90% Rural Model</td>
<td>53</td>
</tr>
<tr>
<td>16.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 95% Rural Model</td>
<td>54</td>
</tr>
<tr>
<td>17.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 98% Rural Model</td>
<td>55</td>
</tr>
<tr>
<td>18.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 0% Urban Model</td>
<td>56</td>
</tr>
<tr>
<td>19.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 50% Urban Model</td>
<td>57</td>
</tr>
<tr>
<td>20.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 70% Urban Model</td>
<td>58</td>
</tr>
<tr>
<td>21.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 90% Urban Model</td>
<td>59</td>
</tr>
<tr>
<td>22.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 95% Urban Model</td>
<td>60</td>
</tr>
<tr>
<td>23.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 98% Urban Model</td>
<td>61</td>
</tr>
<tr>
<td>24.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 0% Maritime Model</td>
<td>62</td>
</tr>
<tr>
<td>25.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 50% Maritime Model</td>
<td>63</td>
</tr>
<tr>
<td>26.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 70% Maritime Model</td>
<td>64</td>
</tr>
<tr>
<td>27.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 90% Maritime Model</td>
<td>65</td>
</tr>
<tr>
<td>28.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 95% Maritime Model</td>
<td>66</td>
</tr>
<tr>
<td>29.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 98% Maritime Model</td>
<td>67</td>
</tr>
<tr>
<td>30.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 0% Maritime Model</td>
<td>68</td>
</tr>
<tr>
<td>31.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 70% Maritime Model</td>
<td>69</td>
</tr>
<tr>
<td>32.</td>
<td>Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 90% Maritime Model</td>
<td>70</td>
</tr>
</tbody>
</table>
33. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 95% Maritime Model
34. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 98% Maritime Model
35. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 99% Maritime Model
36. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 0% Tropospheric Model
37. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 50% Tropospheric Model
38. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 70% Tropospheric Model
39. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 80% Tropospheric Model
40. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 90% Tropospheric Model
41. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 95% Tropospheric Model
42. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 98% Tropospheric Model
43. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Relative Humidity = 99% Tropospheric Model
44. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for the Advection Fog 1 Model
45. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for the Advection Fog 2 Model
46. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Radiation Fog 1 Model
47. Attenuation Coefficients, Single Scatter Albedo, and Asymmetry Parameter for Radiation Fog 2 Model
Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties

1. INTRODUCTION

Propagation of electromagnetic radiation at optical/infrared frequencies through the atmosphere is affected by absorption and scattering by air molecules and by particulate matter (haze, dust, fog, and cloud droplets) suspended in the air. Scattering and absorption by haze particles or aerosols becomes the dominant factor in the boundary layer near the earth's surface, especially under low visibility conditions.

Atmospheric aerosol particles in the atmosphere vary greatly in their concentration, size, and composition, and consequently in their effects on optical and IR radiation.

There are many scientific and technical reasons why it is necessary to develop models for atmospheric aerosols. They are needed to make estimates of the transmittance, of angular light scattering distribution, of contrast reduction, sky radiance, or other atmospheric optical properties or effects.

Models for the optical properties of aerosols have been developed previously at AFGL and elsewhere.1-7* For the lower layer near the earth's surface, these models define an average continental type aerosol whose concentration can be scaled according to surface visibility.

(Received for publication 20 September 1979)

*Due to the large number of references cited in this report, they will not be footnoted. See References, pages 89 through 94.
The aerosol properties in these models were based on experimental measurements that were made during and prior to the mid-1960's. At that time there was sufficient experimental data available to define an average aerosol model with some different haze concentrations in the lower troposphere (up to a few km altitude) with exponential vertical decrease in particle concentration.

During the past decade, in this country and elsewhere, extensive additional measurements from ground as well as airborne platforms have been made of aerosol concentrations, their size distribution, and optical properties, to warrant the development of updated aerosol models that also describe some of the temporal and spatial variations in atmospheric aerosol distributions and properties. There are now sufficient experimental data to develop models for several different types of tropospheric aerosols, including the dependence of the aerosol properties on relative humidity.

Such updated models have been developed by Shettle and Fenn and Toon and Pollack, except both of these sets of models neglect the effects of relative humidity. The present report describes aerosol models for the lower atmosphere and their optical properties including a discussion of how the aerosol properties change as a function of relative humidity. The optical properties of the models are given for a number of wavelengths between 0.2 and 40 μm, and for several different relative humidities ranging from 0 to 99 percent. In addition four fog models are given for the droplet-condensation phase.

The models of the atmospheric aerosols and their optical properties presented below are based on a review of the available data on the nature of the aerosols, their sizes, their distribution, and variability. However, it must be emphasized that these models represent only a simple, generalized version of typical conditions. It is not practical to include all the details of natural aerosol distributions nor are existing experimental data sufficient to describe the frequency of occurrence of the different conditions. While these aerosol models were developed to be as representative as possible of different atmospheric conditions, the following point should be kept in mind when using any such model: Given the natural variability of the atmospheric aerosols almost any aerosol model is supported by some measurements and no model (or set of models) will be consistent with all measurements.

2. MODELS FOR THE PHYSICAL PROPERTIES OF THE AEROSOLS

2.1 Model Size Distribution

The size distributions for the different aerosol models are represented by one or the sum of two log-normal distributions:
\[n(r) = \frac{dN(r)}{dr} = \sum_{i=1}^{2} \left(\frac{N_i}{\ln(10) \cdot r_i \cdot \sigma_i \sqrt{2\pi}} \right) \exp \left(-\frac{(\log r - \log r_i)^2}{2 \sigma_i^2} \right) \]

where \(N(r) \) is the cumulative number density of particles of radius \(r \); \(\sigma \) is the standard deviation; \(r_i, N_i \) are the mode radius and the number density with \(r_i \). This form of distribution function represents the multimodal nature of the atmospheric aerosols that has been discussed in various studies.\(^{10-14}\) While Harris and McCormick\(^{15}\) have suggested using the sum of four log-normal distributions and Davies\(^{16}\) has used the sum of as many as seven log-normal distributions to fit a measured aerosol size distribution, Whitby and Cantrell\(^{17}\) have shown that two modes are generally adequate to characterize the gross features of most aerosol distributions. While a third component is often necessary to represent the Aitken nuclei especially near sources of combustion particulates, their effect on the optical properties is small and will be neglected.

There are measurements showing the composition of the atmospheric particulates depending on their size,\(^{18,19}\) and using a bimodal size distribution offers the possibility of treating the composition of the individual modes separately. However, there is, in general, insufficient experimental data to uniquely define different refractive index models for the different size ranges, along with differing dependence on relative humidity.

For the maritime conditions, there is evidence\(^{20}\) showing that the large particles are almost exclusively of oceanic origin and the smaller particles are predominantly of the same composition as the continental aerosols so that we do not differentiate between the two size ranges in terms of their composition.

Four different aerosol models for the atmospheric boundary layer near the earth's surface have been developed. They differ in particle size distribution and particle refractive index. Table 1 lists the parameters defining the size distributions in accordance with Eq. (1) for these models.

The choices of \(N \) in Table 1 are normalized to correspond to 1 particle/cm\(^3\). The actual size distributions can be re-normalized to give the correct extinction coefficients for the altitude and for the visibility being used. The continental and oceanic components of the maritime model can be used in various proportions depending on the prevailing winds—particularly in coastal regions. The basis for the characterization of each of the aerosol models is discussed in Sections 2.3 through 2.6.

* Following the usual convention, \(\log \) is the logarithm to the base 10 and \(\ln \) is the logarithm to the base \(e \).
Table 1. Characteristics of the Aerosol Models of the Lower Atmosphere

<table>
<thead>
<tr>
<th>Aerosol Model</th>
<th>Size Distribution</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N_i)</td>
<td>(r_i)</td>
</tr>
<tr>
<td>RURAL</td>
<td>0.999875</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.000125</td>
<td>0.5</td>
</tr>
<tr>
<td>URBAN</td>
<td>0.999875</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.000125</td>
<td>0.5</td>
</tr>
<tr>
<td>MARITIME Continental Origin</td>
<td>1.</td>
<td>0.03</td>
</tr>
<tr>
<td>Oceanic Origin</td>
<td>1.</td>
<td>0.3</td>
</tr>
<tr>
<td>TROPOSPHERIC</td>
<td>1.</td>
<td>0.03</td>
</tr>
</tbody>
</table>

*These mode radii correspond to moderate humidities (70 to 80%); values of \(r_i \) as function of humidity are given in Table 2.

Table 2. Mode Radii for the Aerosol Models as a Function of Relative Humidity

<table>
<thead>
<tr>
<th>Relative Humidity</th>
<th>Tropospheric</th>
<th>Rural</th>
<th>Maritime</th>
<th>Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r_1)</td>
<td>(r_1)</td>
<td>(r_2)</td>
<td>(r_1)</td>
</tr>
<tr>
<td>0%</td>
<td>0.02700</td>
<td>0.02700</td>
<td>0.4300</td>
<td>0.1600</td>
</tr>
<tr>
<td>50%</td>
<td>0.02748</td>
<td>0.02748</td>
<td>0.4377</td>
<td>0.1711</td>
</tr>
<tr>
<td>70%</td>
<td>0.02846</td>
<td>0.02846</td>
<td>0.4571</td>
<td>0.2041</td>
</tr>
<tr>
<td>80%</td>
<td>0.03274</td>
<td>0.03274</td>
<td>0.5477</td>
<td>0.3180</td>
</tr>
<tr>
<td>90%</td>
<td>0.03884</td>
<td>0.03884</td>
<td>0.6462</td>
<td>0.3803</td>
</tr>
<tr>
<td>95%</td>
<td>0.04238</td>
<td>0.04238</td>
<td>0.7078</td>
<td>0.4606</td>
</tr>
<tr>
<td>98%</td>
<td>0.04751</td>
<td>0.04751</td>
<td>0.9728</td>
<td>0.6024</td>
</tr>
<tr>
<td>99%</td>
<td>0.05215</td>
<td>0.05215</td>
<td>1.1755</td>
<td>0.7505</td>
</tr>
</tbody>
</table>

2.2 Effects of Humidity Variations on Aerosol Properties

As the relative humidity increases, water vapor condenses out of the atmosphere onto the particulates suspended in the atmosphere. This condensed water increases the size of the aerosols and changes their composition and their effective refractive index. The resulting effect of the aerosols on the absorption and scattering of light will correspondingly be modified. There have been a number of studies of the change of aerosol properties as a function of relative humidity. The most comprehensive of these, especially in terms of the resulting effects on the aerosol optical properties is the work of Hänel.
The change in the particulate size is related to the relative humidity by
(following Hänel's notation)

\[r(a_w) = r_o \left[1 + \rho \cdot \frac{m_w(a_w)}{m_o} \right]^{1/3} \]

(2)

where

- \(r_o \) is the dry particle radius,
- \(\rho \) is the particle density relative to that of water,
- \(m_w(a_w) \) is the mass of condensed water,
- \(m_o \) is the dry particle mass, and
- \(a_w \) is the water activity which is essentially the relative humidity \(f \), corrected for curvature of the particle surface.

\[a_w = f \cdot \exp \left(\frac{-2\sigma V_w}{R_w T \cdot r} \right) \]

(3)

where

- \(\sigma \) = surface tension on the wet particle surface,
- \(V_w \) = specific volume of water,
- \(R_w \) = specific gas constant for water,
- \(T \) = absolute temperature (°K).

For room temperature (\(T = 298°K \)),

\[\frac{2\sigma V_w}{R_w T} = 0.001056 \text{ [micron]} \] (Hänel, page 126).

Typical atmospheric temperatures are as much as 20 percent lower but, for particle radii \(r > 0.01 \mu \text{m} \), this leads to errors of less than 2 percent in curvature effect so Eq. (3) can be rewritten as

\[a_w = f \cdot \exp \left(\frac{-0.001056}{r(a_w)} \right) \]

(4)

where \(r \) is in \(\mu \text{m} \) and where the dependence of \(r \) on \(a_w \) has been made explicit.

There are a number of studies on change in size or mass of aerosol particles as a function of relative humidity for various electrolytes and natural atmospheric particulates. Hänel (in his Table IV) has tabulated his and other measurements of \(\frac{m_w(a_w)}{m_o} \) vs \(a_w \) for various types of...
natural aerosols. However, even with this data on the relative mass of condensed water for use in Eq. (2), it is not possible to combine Eq. (2) and (4) into an exact analytic expression giving aerosol radius, r, as an explicit function of relative humidity, because a_w appears on both sides of Eq. (4). Various approximations have been developed. However, these tend to breakdown for small particle sizes and high humidities.

To avoid the limitations of these approximations, Eq. (2) and (4) were used alternately in an iterative manner until they converged (typically 5 or 6 iterations) starting with $a_w = 1$ on the right side of Eq. (2). Starting with $r = r_0$ in Eq. (4) leads to the same result. To interpolate between Hanel's data for different water activities, a_w^1 and a_w^{1+1}, it was assumed that

$$
m_w(a_w^i) \approx \left(\frac{1-a_w}{1-a_w^{i+1}} \right)^{a_w^i} \cdot (5)
$$

Once the wet aerosol particle size is found from Eq. (2) and (4), the effective complex refractive index, n, is simply the volume weighted average of the refractive indexes of the dry aerosol substance, n_o, and water, n_w. Equivalently, this can be written as

$$
n = n_w + (n_o - n_w) \cdot \left(\frac{r_o}{r(a_w)} \right)^3 \cdot (6)
$$

For the refractive index of water, the survey of Hale and Querry was used. While there are some minor differences between the optical constants in Hale and Querry's survey and the more recent measurements these differences are comparable with the experimental errors and are small compared with the other uncertainties in the model parameters. These refractive index data are shown in Figure 1.

2.3 Rural Aerosol Model

The "Rural Model" is intended to represent the aerosol under conditions where it is not directly influenced by urban and/or industrial aerosol sources. The rural aerosols are assumed to be composed of a mixture of 70 percent of water soluble substance (ammonium and calcium sulfate and also organic compounds) and 30 percent dust-like aerosols. The refractive index for these components based on the measurements of Volz is shown in Figure 2 and tabulated in Table 3. These refractive index data weighted by the mixing ratio of the two components are consistent with other direct measurements, and with values inferred from in situ measurements.
Figure 1. Refractive Index of Oceanic Aerosol, Water, and Sea Salt

Figure 2. Refractive Index for the Dry Rural and Urban Aerosol Components
Table 3. Refractive Index for the Different Aerosol Components
In the preliminary version of these models, the water-soluble and dust-like components were treated separately and the results of the Mie scattering calculations on individual components were combined. To reduce the calculations for the current models, which now are done as a function of humidity, the individual aerosol particles were considered to be a homogeneous combination of the different types of substance—as many natural aerosols are. The resulting refractive index for the composite rural aerosol is given in Table 3. However, Bergstrom has argued that using such mean refractive indexes in determining the optical properties will result in errors.

However, it should be noted that using this composite refractive index and Shettle and Fenn's rural aerosol size distribution and comparing these results for the scattering and absorption coefficients with those based on separate calculations for the different aerosol types, one finds only a 5 percent difference except for the scattering minimum at 8.2 μm where the difference was 16 percent.

The parameters for the rural model size distribution given in Table 1 fall within what Whitby and Cantrell give as a typical range of values for the accumulation and coarse particle modes.

The resulting number density distribution, \(n(r) \), is shown in Figure 3. While this size distribution approximates a \(r^{-4} \) power law for radii between 0.1 and 20 μm, there are some fluctuations about a slope of -4 because of the bimodal nature of the distribution. The major change from the earlier version of the rural model is that the number density of the very small \((r < 0.5 \mu m) \) particles is more accurately represented.

To allow for the dependence of the humidity effects on the size of the dry aerosol, the growth of the aerosol was computed separately for the accumulation and coarse particle components using Hänel's model No. 6 water uptake data. In accounting for the aerosol growth in Eq. (2), changes in the width of the size distribution were assumed negligible so only the mode radius, \(r_i \), was modified by humidity changes. The effective refractive indexes for the two size components were then computed from Eq. (6) as a function of relative humidity. The cumulative number density and the volume distribution are shown in Figures 4 and 5 respectively for several different relative humidities. The refractive index as a function of wavelength and relative humidity is given in Table 4.

2.4 Urban Aerosol Model

In urban areas the air with a rural aerosol background is primarily modified by the addition of aerosols from combustion products and industrial sources. The urban aerosol model therefore was taken to be a mixture of the rural aerosol with carbonaceous aerosols. The sootlike aerosols are assumed to have the same size distribution as both components of the rural model. The proportions of the sootlike
aerosols and the rural type of aerosol mixture are assumed to be 20 percent and 80 percent respectively. The refractive index of the sootlike aerosols was based on the soot data in Twitty and Weinman's survey of the refractive index of carbonaceous materials. As with the rural model, a composite urban aerosol refractive index was determined at each wavelength. These values are given in Table 3.

The change in aerosol was based on Hanel's urban aerosol data (his Model 5) and is given in Table 2. The resulting refractive indexes as a function of relative humidity are given in Table 5.

Figure 3. Aerosol Number Distribution (cm\(^{-3}\) \(\mu m^{-1}\)) for the Rural Model at Different Relative Humidities With Total Particle Concentrations Fixed at 15,000 cm\(^{-3}\)
Figure 4. Cumulative Number Density (cm$^{-3}$) for the Rural Aerosol Model at Different Relative Humidities With Total Particle Concentration Fixed at 15,000 cm$^{-3}$

Figure 5. Volume Distribution (μm3/cm3) for the Rural Aerosol Model at Different Relative Humidities With the Total Particle Concentration Fixed at 15,000 cm$^{-3}$
Table 4. Refractive Index of the Rural Model as a Function of Relative Humidity and Wavelength (a) Small Rural Aerosols

<table>
<thead>
<tr>
<th>WAVELENGTH (µ)</th>
<th>SMALL RURAL RH = 62%</th>
<th>SMALL RURAL RH = 93%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.530 - 1.540</td>
<td>1.523 - 1.540</td>
<td>1.510 - 1.520</td>
<td>1.497 - 1.320</td>
<td>1.351 - 1.616</td>
<td>1.621 - 1.666</td>
<td>1.641 - 1.686</td>
<td>1.645 - 1.716</td>
</tr>
</tbody>
</table>