A Spectrographic Interpretation of the Shock-Produced Color Change in Rhodonite (MnSiO₃): The Shock-Induced Reduction of Mn(III) to Mn(II). ¹

ROBERT C. GIBBONS, THOMAS J. KINZAWA, AND GEORGE R. ROSSMAN
California Institute of Technology, Seismological Laboratory, Pasadena, California 91109

Abstract

Samples of rhodonite (Mn₃SiO₄·2H₂O, pyroxmangite, from Franklin, New Jersey) have been shock-loaded to pressures up to 496 kilobars. Optical spectral studies of four colored samples show a decreasing Mn⁺⁺ content upon recovery from successively higher shock pressures; after shock-loading to 496 kbar, the Mn⁺⁺ has essentially disappeared. No corresponding change in the optical spectrum results from heating rhodonite to 1250°C for 3.3 hours in a reducing atmosphere. Rhodonite heated to 1360°C under the same conditions melts incongruently to manganese-rich glass and silica with disappearance of the 540 nm Mn⁺⁺ absorption band. The color change in the shocked rhodonite arises from irreversible reduction of Mn⁺⁺ during high shock pressures and possible high shock temperatures. It is suggested that Mn⁺⁺ is reduced to Mn⁺⁺ by water present in the sample during the shock event.

Introduction

Rhodonite (Mn₃SiO₄, variety fowlerite, from Franklin, New Jersey) has a characteristic pink color. During optical and X-ray studies performed while attempting to characterize shock-induced phase changes in rhodonite, we observed that this color was not present in intensely shocked samples. Absorption spectra of several specimens, both shocked and unshocked, were measured to determine what optically apparent physical or chemical change was occurring as a result of the shock wave experiments. The characteristic color of the variety of rhodonite is caused by a prominent absorption band in the visible region of the rhodonite spectrum at 540 nm due to an electronic transition in Mn⁺⁺. This absorption band decreases in intensity with increasing shock pressure and disappears by 496 kbar. A series of experiments has been performed to determine the shock pressures required to cause this phenomenon, and to obtain spectroscopic information on the effect of the high shock pressure event upon the manganese in the samples.

Experimental

A specimen of coarse-grained rhodonite (analysis in Table 1) was shrunk into slabs, parallel to (001), from which several discs 4.75 mm in diameter and 0.5 mm thick were cut and prepared for shock recovery experiments. The discs were shock-loaded using the techniques and facilities described by Gibbons and Ahrens (1971). The peak shock pressures reached in the samples were determined graphically by an impedance matching technique, as described by Gibbons and Ahrens (1971). The accuracy of those pressures is ±3 percent at lower shock pressures and ±6 kbar at pressures greater than 200 kbar. Four samples were recovered, ground, and polished to approximately 0.15 mm thickness for spectroscopic studies. Optical absorption spectra were obtained between 200 and 2500 nm on a Cary 171 spectrophotometer, and infrared spectra were obtained with a Perkin Elmer model 180 infrared spectrophotometer.

Optical Spectra

The optical spectrum of an unshocked rhodonite specimen (Fig. 1, spectrum A) shows, within the infrared, a weak band at about 2300 nm, a more intense band at 1530 nm, and the dominant band at 1035 nm. In the visible-ultraviolet, prominent bands occur at 540 nm, 408 nm, and 345 nm, with less intense shoulders at 360 nm and 400 nm. A second component at 411 nm appears on the 408 nm band, which in turn is a closely spaced doublet.

¹Contribution No. 2337, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.
Table 1. Analysis of Rhodonite from Franklin, New Jersey

<table>
<thead>
<tr>
<th>Side</th>
<th>Weight (g)</th>
<th>Side</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>habit</td>
<td>24.3</td>
<td>habit</td>
<td>1.33</td>
</tr>
<tr>
<td>habit**</td>
<td>57.18</td>
<td>habit**</td>
<td>1.86</td>
</tr>
<tr>
<td>240</td>
<td>6.09</td>
<td>40</td>
<td>0.36</td>
</tr>
<tr>
<td>240</td>
<td>5.72</td>
<td>2</td>
<td>0.03</td>
</tr>
</tbody>
</table>

*In glass of unknown make and two fragments by A. Stieben using the California Institute of Technology electron microprobe. **Treat as one sample. The amount of Mn²⁺ calculated on the basis of sample thickness = 0.070% of absorption of the 240 nm Mn²⁺ band = 0.12 and ε = 10 (0.03 percent). The ε value was determined from mean values of Mn²⁺ absorption in Mn²⁺- and Mn³⁺- (collected) 1925, 1926, and unpublished (Manning, 1927). ***Total Fe as Fe²⁺.

The optical spectrum of a rhodonite recovered from shock-loading to 496 kbar (Fig. 1, spectrum B) displays a relatively sharp asymmetric band at 248 nm and a weak band at 520 nm. The 540 nm band has disappeared completely. The near-infrared region now has a much broader absorption band with a maximum in the vicinity of 1035 nm; the 1530 nm band has disappeared. Features in the 2230-2450 nm and 1710 nm regions arise from organic materials used in preparation of the recovered sample. All features are superimposed upon a background, steadily rising towards the ultraviolet, which results from scattering from the pervasively internally-shattered specimen recovered from the shock experiment.

The 540 nm band, which we attribute to Mn²⁺ (see below), decreases in intensity at shock pressures above 210 kbar. Thus, in the spectra of samples shocked to 78 (not illustrated) and 210 kbars, the area of the Mn²⁺ band remained essentially unchanged whereas at 390 kbar it was about two-thirds as great as it was at 210 bar, and by 496 kbar it had disappeared completely revealing the band at 520 nm (Fig. 2).

Other changes in the spectra involve the character and position of the set of sharp bands near 408 nm attributable to Mn³⁺. In the standard sample and those shocked to 78 (not illustrated) and 210 kbar, the band system remains split, indicating crystalline order in the mineral and distortion of the multiple Mn³⁺ sites away from regular octahedral geometry. This splitting, which appears as a series of well-resolved, closely-spaced bands on the low energy side of the 408 nm band in expanded scale spectra, is too small to be resolved at the scales of Figures 1 and 2. In the 390 kbar and the 496 kbar samples, no appreciable splitting is observed, probably because of disorder and partial vitrification of these specimens produced by the shock process. The shift of the band to 420 nm in the 496 kbar sample may be another indicator of vitrification; in the other samples it stays at 408 nm.

Assignment

The assignment of the spectral features to Mn²⁺, Mn³⁺, and Fe³⁺ follows well established assignment schemes for these ions in other systems. Pence and Nüekeil (1963) describe the crystal structure of rhodonite as plates of octahedrally coordinated cations alternating with planes of tetrahedrally coordinated Si-ions between planes of close-packed oxygens. In each unit cell there are four distorted octahedral sites available for the manganese cations, and a fifth site of irregular seven-coordination which calcium preferentially fills. Divalent iron in orthopyroxenes produces two absorption features in the near-infrared, a strong band near 1000 nm in α-polarization and a weaker band near 1900 nm in β-polarization (Barnard and Barns, 1967). Analogous ferrous iron features appear in the spectra of manganese pyroxenes and pyroxenoids. In the spectrum of pyroxmangite (Figure 1, Manning, 1968) we assign to Fe³⁺ the bands labeled 9800 and 4750 cm⁻¹ (1020 and 2105 nm) and in the case of our rhodonite, the band at 408 nm.
1035 nm. The low energy Fe$^{3+}$ band is not pronounced in the rhodonite orientation shown here. However, in the spectrum of a rhodonite from Broken Hill, New South Wales, Australia, of higher relative iron concentration, low Mn$^{2+}$ concentration, and greater thickness (not illustrated), a feature assignable to the low-energy Fe$^{3+}$ band occurs at 2280 nm. A weak feature can be seen in the New Jersey rhodonite spectrum in the vicinity of 2300 nm. The most intense of the Fe$^{3+}$ spin-forbidden bands occurs at about 500 nm in orthorhombic rhodonite and can be seen at 506 nm in the Broken Hill rhodonite spectrum in both our spectrum and that reported by Keister and White (1966). Its intensity is too low to be important in the New Jersey rhodonite.

The Mn$^{2+}$ spectrum in rhodonite has been reported previously by Keister and White (1966) and Manning (1968). We agree with their choice of an octahedral symmetry to assign the spectra and with their assignment of the 408 nm system to the $\Delta g \rightarrow \Delta g, \varepsilon$ transition and the 440 nm band to the $\Delta g \rightarrow \varepsilon g$ transition of Mn$^{2+}$. However, we do not agree with the assignment of the 540 nm band to the $\Delta a \rightarrow \varepsilon g$ transition, but instead will show below that the 540 nm band is properly assigned to Mn$^{2+}$. The remaining Mn$^{2+}$ transition, $\Delta a \rightarrow \varepsilon g$, which is expected to have an intensity comparable to the $\Delta a \rightarrow \varepsilon g$ 440 nm band, is instead assigned to the band at 520 nm which appears in the shocked samples. This band is analogous to the 514 nm band in rhodonite from which Mn$^{2+}$ has been removed thermally. The same band is observed as a shoulder on the 540 nm band in Keister and White’s (1966) spectrum.

The remaining two important bands at 540 and 1530 nm are attributed to Mn$^{2+}$. In Jahn-Teller distorted octahedral oxygen environments, Mn$^{2+}$ has a prominent absorption band in the 470–560 nm region (Dingle, 1966; Burns, 1970; Burns and Soren, 1967; and Davis, Fackler, and Weeks, 1968), with which we associate the 540 nm rhodonite band. The low energy absorption feature arising from the transition between the components of the Jahn-Teller split εg state can appear over the range of 5000 to 20,000 cm$^{-1}$ (Davis et al., 1968). We assign the 1530 nm rhodonite band to this transition because (1) its intensity is not correlated with the intensity of the 1035 nm Fe$^{3+}$ band, (2) it has a qualitatively correlated with the Mn$^{2+}$ band (in low Mn$^{2+}$ material, the intensity of the 1530 nm band is too low to provide meaningful quantitative data), and (3) it disappears with the 540 nm Mn$^{2+}$ band upon shock-loading.

Discussion

Trivalent manganese is lost in rhodonite after shock-loading to high pressures. Burns (1970), in an outline of crystal field theory, briefly describes
the Jahn-Teller effect on certain transition metal ions. In summary, if the distribution of electrons in the d-orbitals of a transition metal ion is such that the ground state is degenerate, the coordination polyhedra will distort spontaneously to remove the degeneracy and make one energy level more stable (Jahn and Teller, 1937). High spin Mn$^{4+}$ with a3 electronic configuration is susceptible to such distortion, and the Mn$^{4+}$ ion is stabilized in distorted octahedra. Conversely, Mn$^{3+}$ is less stable in a regular octahedral site and in this environment will have a tendency to oxidize or reduce to the more stable electronic configurations of Mn$^{2+}$ or Mn$^{4+}$. From the crystal structure of rhodonite it is known that all cation sites are distorted from octahedral symmetry so that Mn$^{3+}$ could be stabilized in all five sites. Pressures and temperatures produced by shock-loading to more than 210 kbar are probably sufficient to affect the regularity of the manganese octahedra. Any destruction of crystalline order probably increases the regularity of the octahedra and decreases the stability of the Mn$^{3+}$ ions. Hence, Mn$^{3+}$ could be reduced to Mn$^{2+}$ as a result of shock-loading to very high pressures. The alternative of oxidation to Mn$^{4+}$ is not considered further since, concurrent with the loss of the Mn$^{4+}$ spectrum, there is not the growth of a Mn$^{3+}$ (d^4) spectrum whose (spin-allowed) intensity would be expected to be comparable to that of the Mn$^{4+}$ being lost.

The effect of temperature alone must be considered since appreciable increases in sample temperature accompany the shock-loading. In order to determine this effect, two samples were heated to 1250°C and 1300°C respectively; this is just below and above the peritectic melting point of 1291°C. Each sample was held for 3.5 hours in a reducing atmosphere of 99 percent argon and 1 percent H$_2$ at atmospheric pressure. The 1250°C sample was cooled to room temperature in about 1 hour; the other was quench-cooled more rapidly in about 15 minutes.

The spectra of the standard and the 1250°C sample are compared in Figure 3. There is only a small change in the relative intensities of the Mn$^{3+}$ and Mn$^{4+}$ bands and essentially no color change in the sample. Heating to 1250°C for 3.5 hours does not appreciably affect the oxidation state of the manganese in the dioctahedra.

The spectra of the standard and the 1300°C sample are contrasted in Figure 4. The 540 nm Mn$^{3+}$ band is not present. Since the heating was done in a reducing atmosphere, the Mn$^{3+}$ was probably reduced to Mn$^{2+}$. The feature at 514 nm in the spectrum of the heated sample is assigned to $^4A_{1g} \rightarrow ^4T_{2g}$ transition in Mn$^{2+}$. Since the heated sample, which is a quenched multicrystalline assemblage, will

![Diagram](image_url)
not retain the exact same environment about the manganese ions as exists in rhodonite, the positions and intensities of the spectroscopic bands are expected to differ from those of rhodonite. The spectrum of the melted sample in the 400–470 nm region nevertheless bears considerable similarity to the rhodonite spectrum and suggests that there should be a Mn$^{2+}$ band in the vicinity of 510–520 nm in rhodonite. In fact, a weak shoulder at 520 nm has been observed on the 540 nm Mn$^{2+}$ band in the spectra of shocked and unshocked rhodonites.

Reduction of transition metal ions with increasing pressure has been observed in at least two other instances. Dickhamer et al. (1970) and Dickhamer and Frank (1973) have observed a reversible reduction of Fe$^{3+}$ to Fe$^{2+}$ in a variety of compounds and Burns, Tonsell, and Vaughan (1972) have reported similar Fe$^{3+}$ → Fe$^{2+}$ reduction in a synthetic ferric amphibole, using static compression apparatus. Production of Mn$^{2+}$ from Mn$^{3+}$ in CaCO$_3$ by high temperatures has been observed by Low and Zeira (1972) in ESZ spectral studies by heat-treating argonite and transforming it to calcite. Mn$^{3+}$ is unstable in the aragonite but stable in the more regular calcite structure.

Dickhamer proposes that Fe$^{3+}$ is reduced to Fe$^{2+}$ by transfer of electrons from nonbonding ligand orbitals to metal 3d antibonding orbitals. Low and Zeira believe that the electrons required for the Mn$^{3+}$ to Mn$^{2+}$ reduction in CaCO$_3$ may originate from a charge compensating cation or by release from structural vacancies as a result of higher temperatures.

In analogy to Dickhamer's (1970) proposal, a possible source of electrons would be the oxygen ligands of the Mn$^{3+}$. One is then faced with the difficulty of accounting for the fate of the electron-deficient oxide which tends to be highly unstable. A more reasonable source of electrons would be the charge-compensating cations, in particular Fe$^{3+}$. The reaction Fe$^{3+}$ + Mn$^{3+}$ → Fe$^{2+}$ + Mn$^{2+}$ is feasible since divalent iron is present at greater concentrations than the trivalent manganese. We prefer another hypothesis, however, discussed below. We also rule out the possibility that electrons trapped in crystal defects could be present in anywhere near the quantity needed to reduce the estimated 0.3 percent Mn$^{3+}$ (see Table 1).

Infrared spectroscopic studies (Fig. 5) show that the unshocked rhodonite contains both a trace of isolated hydroxyl groups and a greater amount of molecular water. The hydroxide stretching bands are a pair of sharp absorption features at 3680 and 3663 cm$^{-1}$. The more intense 3680 cm$^{-1}$ band has an absorption coefficient of 2.7 cm$^{-1}$. In the specimen shocked to 496 kbar, the hydroxide band occurs at 3665 cm$^{-1}$ and has been reduced in intensity to 0.3 cm$^{-1}$. Water present in the unshocked specimen produces an absorption band with maximum absorption at about 3400 cm$^{-1}$ with an absorption coefficient of 7.6 cm$^{-1}$ whereas the 496 kbar shocked specimen shows a considerably reduced absorption intensity of 3.4 cm$^{-1}$. Since the rhodonite used in these experiments is internally fractured, much of the water present need not be in the crystal structure but, instead, could reside within the fractures. For comparison, a gem-quality rhodonite from Franklin, New Jersey, free of fractures and low in Mn$^{3+}$, has only a weak water band at 3423 cm$^{-1}$ with an absorption coefficient of 0.96 cm$^{-1}$, somewhat lower than the shocked sample.

The presence of water in the rhodonite samples, wherever its location, is important since it provides
A species with which Mn" could react. From a comparison of the intensity of the water absorption in the unshocked specimen to that in materials of known water content, we estimate that the initial sample contains about 5.5 mg H2O cm⁻³, or 3.1 molal H2O cm⁻³. The Mn" concentration which was estimated to be 0.3 percent corresponds to 0.2 mmole Mn⁺² cm⁻³. Water is thus present in a large stoichiometric excess. At room temperature most manganese(III) compounds are unstable in aqueous solution with respect to disproportionation to Mn(II) and Mn(IV) compounds. We propose that under the conditions of the shock, the Mn⁺² ions are reduced to divalent manganese by water or its decomposition products. Similarly, in ferro amphibole, Burns et al. (1972) postulate that Fe⁺³ to Fe⁺² reduction is facilitated by the oxidation of OH⁻ ions to OH free radicals in the M1 and M3 sites of the amphibole structure.

Acknowledgments
Dave Cole did the high temperature experiments; we appreciate his assistance. We thank Jo Laird for critically reading the manuscript and acknowledge helpful discussions of the work with Ed Gaffney. We thank Elmer Stufflebeam, Charles Hudson, and Richard Waggoner for their careful construction of the target assemblies. This work was sponsored under DA-ARO-D-31-124.72.C64 (Army Research Office) and GA 21939 (National Science Foundation).

References
\[\text{Manuscript received, June 15, 1973; accepted for publication, September 15, 1973.}\]