CHARACTERISTIC OF DYNAMIC TENSILE FRACTURE IN AUGITE-PERIDOTITE

Hongliang He(1) Xiaogang Jin(1) Fuqian Jing(3) Thomas J. Ahrens(3)

a) Laboratory for Shock Wave and Detonation Physics Research, Southwest Institute of Fluid Physics, *P.O. Box 523-61, Chengdu, Sichuan 610043, P.R. China
b) Lindhurst Laboratory of Experimental Geophysics, Seismological Laboratory, Caltech 252-21, Pasadena, CA 91125

Planar impact experiments were carried out to induce controlled dynamic tensile fracture in augite-peridotite. Samples, backed with PMMA buffer and windows, were impacted with PMMA impactor at velocities of 30 to 160 m/s. This resulted in maximum tensile stresses were in the range of ~50 to 290 MPa. Spall strength was determined to be ~58.1 MPa from a particle velocity profile measurement. The spall strength HEL ratios for augite-peridotite and several other rocks were discussed based on the Griffith's yield criterion and the experimental measurements.

INTRODUCTION

Big impact and explosive cratering events in rock medium usually bring about several typical characteristic zones: vaporization, melting, fragmentation, spallation and elastic deformation. A good understanding of the dynamic response of rocks is essential as the development of a predictive modeling for the cratering process. Spallation is a consequence of dynamic tensile failure. Metals(1) has demonstrated that large ejected fragments are mainly produced by spall. Grady and Hollenbach(2). Cohn and Ahrens(3), and Ahrens and Rubin(4) have pursued this phenomenon for several kind of rocks.

In this paper, we report a basic study for the understanding of the dynamic tensile fracture characteristic in rock. Planar impact technique was employed to induce controlled dynamic tensile stress.

EXPERIMENTS

Sample Description

The augite-peridotite samples studied in the present work were collected from Baoshan county about 100km Southwest of Chengdu, P.R.China. It is an ultrabasite rock, consisting of 65% augite, 17% peridot, and 18% other minerals by volume. In order to eliminate the effect of pore water on dynamic fracture behavior, samples were heated at about 200 °C for 48 hours, and then kept in desiccator. Some basic parameters were measured as follows: mean grain size 1.5mm, Bulk density 2.96Mg/m³, P-wave velocity 5.29km/s, S-wave velocity 3.46km/s. Poisson's ratio was measured to be 0.126. Travel-time method with 0.5MHz PZT transducers was used to measure the ultrasonic wave velocities.

Short Impact

Planar impact experiments were performed on the one stage light gas gun (100mm diameter). Figure 1 is a schematic of the experimental set-up, which is similar to that designed by Grady and Hollenbach(2). Upon impact, compressive waves propagate forward into the sample and back into
the impactor. Tension is produced when these compressive waves, reflected as release waves from the rear surfaces of the sample and the impactor, meet within the sample. Sample is square-shaped with 16mm side length, and 10mm thickness.

![Diagram](image)

Figure 1. Schematic of the experimental setup.

The thickness ratio of sample to impactor is 5:1, which ensures spall occurring in the middle of the sample, approximately.

A Michelson displacement laser interferometry was employed to measure the time-resolved motion at the interface between the buffer and window as shown in Fig. 2. Displacement of the interface causes a fringe frequency, which is recorded by a photographic plate and an oscilloscope. The post-impact velocity profile is then reduced from a differentiation of the time-resolved displacement data.

Four shots have been carried out, impact velocities varied from 30 to 160 m/s (see Table 1). In the first three shots, we did not get a good signal for analysis, because the fluctuation of interference field of the laser interferometer. Later, we added a polarizer and a 1/4 wave plate (see Fig. 2) as a light isolator to improve the interference field. Also, we added another photomultiplier tube (No. 2 in Fig. 2) to monitor the laser output. Then, in the experiment, we waited and fixed the time during the time when the interference field was stable. Figure 3 is the particle velocity profile measured in the fifth shot. A "pull-back" signal provides an indication of the fracture process, which is in agreement with the terminal observation that spall occurred upon this impact. In all shots, a recovery position behind the target, which allowed the sample to be recovered and for post-examination.

![Graph](image)

Figure 2. Schematic of the Michelson displacement laser interferometry.

Figure 3. Particle velocity profile measured in shot 65-1-24, point 2 as experimental data, solid line is calculated fit.

RESULTS AND DISCUSSION

Spall Strength

Table 1 is a list of the loading conditions and preliminary results.

Define shock impedance, $Z_i = \rho_i c_i$, $Z_e = \rho_e c_e$, $Z_{in} = \rho_{in} c_{in}$ (1) where ρ and c are initial density and P-wave velocity; subscripts i, e refer to the impactor, target.
<table>
<thead>
<tr>
<th>Shot</th>
<th>Impact velocity (m/s)</th>
<th>Maximum tensile stress (MPa)</th>
<th>Measured spall strength (MPa)</th>
<th>Terminal observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>94-7-29</td>
<td>94.2</td>
<td>168.5</td>
<td>---</td>
<td>spall</td>
</tr>
<tr>
<td>94-8-18</td>
<td>27.5</td>
<td>49.2</td>
<td>---</td>
<td>no-spall</td>
</tr>
<tr>
<td>94-8-24</td>
<td>159.1</td>
<td>286.4</td>
<td>---</td>
<td>spall</td>
</tr>
<tr>
<td>95-1-24</td>
<td>111.8</td>
<td>260.4</td>
<td>58.1</td>
<td>spall</td>
</tr>
</tbody>
</table>

Note: 1. Impactor material is PMMA, 2mm thickness, 85mm diameter; 2. Sample is square-diasped, 10mm thickness, 60mm side length.

and window (and buffer), respectively. In this study, impactor, window and buffer are the same material PMMA. Its initial density is 1.18Mg/m^3, its shock wave speed in the low-stress regime is 2.8km/s.[5]

Maximum tensile stress is the target (rock sample) is calculated as follow:

$$\Delta \sigma = \sigma_0 \frac{Z_0 - Z_1}{Z_1 + Z_0} (1 - \frac{2Z_0}{Z_1 + Z_0})$$

(2)

Here σ_0 is the impact velocity.

Spall strength is determined by [6]:

$$\sigma_{spall} = \frac{1}{2} (\sigma_1 - \sigma_2) (\frac{1}{\sigma_{max}} - \frac{1}{\sigma_{min}})$$

(3)

Here σ_{max} is the peak amplitude of the velocity, σ_{min} is the lowest amplitude of the velocity (see Fig.3). No attention is paid to the effect of attenuation of the wave when it propagates from the spall plane to the recording interface. In shot 95-1-24, the average σ_{max} is 28.0 MPa, σ_{min} is 12.7 m/s (see Fig.3), this yields a spall strength about 58.1 MPa for aguiste-peridotite.

Ahrens and Rubes [4] observed substantial sound velocity reduction in the post-shock rock samples, indicating the dynamic tensile damage in those samples. In shot 94-8-18, the calculated maximum tensile stress was slightly less than the spall strength. This sample was recovered in a whole block, and no apparent damage or cracks was found on the outside surface. Therefore, it is interesting to measure the sound velocity to see if there is any velocity reduction. Results show that P-wave velocity is 5.44 km/s, S-wave velocity is 3.33 km/s. They are almost the same as the pre-shock sample's, no sound velocity reduction is observed. Therefore, we infer that the threshold stress of cracks growing in between 49.2 and 58.1 MPa for aguiste-peridotite.

Spall Strength/HEL Ratio

Recently, Rosenberg[7] suggested the applicability of the Griffiths failure criterion[8] for ceramics and demonstrated the ability of this criterion to capture several of the unique shock effects in these brittle materials. Griffith's biaxial-stress criterion gives the following equation for the yield surface:

$$\sigma_1 - \sigma_2 = 8\kappa_1 (\sigma_1 + \sigma_2)$$

(4)

where σ_1, σ_2 are principal stresses and σ_0 is the tensile strength under uniaxial stress conditions.

In the shock wave environment, Rosenberg suggests that the value ω_0 in Eq.(4) is substituted by the spall strength, then the following relation of HEL and spall strength can be written:

$$\omega_{HEL} = 8 - \frac{1 - \nu}{(1 - 2\nu)^2} \omega_{spall}$$

(5)

where ν is the Poisson's ratio.

Based on Eq.(5), a comparison of $\omega_{spall}/\omega_{HEL}$ ratio between the theory and experiment is shown in Fig.4 for aguiste-peridotite and selected rocks, corresponding experimental data and references are listed in Table 2.
TABLE 2. Spall strength / HELL Ratio for Selected Rocks

<table>
<thead>
<tr>
<th>Rock</th>
<th>C_p (km/s)</th>
<th>C_s (km/s)</th>
<th>ν</th>
<th>σ_{spall} (MPa)</th>
<th>σ_{HELL} (MPa)</th>
<th>$\sigma_{spall} / \sigma_{HELL}$ ($\times 10^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkansas Novaculite</td>
<td>5.99</td>
<td>4.06</td>
<td>0.075</td>
<td>94.7</td>
<td>84.1</td>
<td>1.18</td>
</tr>
<tr>
<td>Westerly Granite</td>
<td>5.04</td>
<td>3.09</td>
<td>0.199</td>
<td>45.0</td>
<td>3.73*</td>
<td>1.22*</td>
</tr>
<tr>
<td>San Marcos Gabbro</td>
<td>0.32</td>
<td>1.47*</td>
<td>3.075</td>
<td>3.6</td>
<td>2.45-4.9</td>
<td></td>
</tr>
<tr>
<td>Blair Delomite</td>
<td>6.26</td>
<td>3.51</td>
<td>0.271</td>
<td>47.0</td>
<td>2.54*</td>
<td>1.88</td>
</tr>
<tr>
<td>Bracon Angle-persilite</td>
<td>5.29</td>
<td>3.46</td>
<td>0.126</td>
<td>50.1</td>
<td>5-5*</td>
<td>0.97-1.16</td>
</tr>
</tbody>
</table>

Note: 1) $\nu = \frac{1}{2} \left(1 - \frac{1}{(C_p/C_s)^2} - 1\right)$; 2) Measured by us in a different experiment.

Except for San Marcos Gabbro, the other rocks are much below the Griffith's prediction, which indicates that these rocks cannot be treated as pure Griffith type brittle material in shock wave environment.

![Graph](image)

Figure 4. A comparison of $\sigma_{spall} / \sigma_{HELL}$ ratio between the theory and experiment for selected rocks. 1—Arkansas Novaculite; 2—Blair Angle-persilite; 3—Westerly Granite; 4—Blair Delomite; 5—San Marcos Gabbro.

ACKNOWLEDGMENTS

This study is supported by the Science Foundation of CAEP, contract number 9401001.

REFERENCES