High interseismic coupling in the Eastern Makran (Pakistan) subduction zone

Y.N. Lin a, R. Jolivet b,c,*, M. Simons a, P.S. Agraw d, H.R. Martens a, Z. Li e, S.H. Lodi d

a Seismological Laboratory, Geophysical and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
b Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
c COMET-C, School of Civil and Environmental Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
d Department of Civil Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
e COMET-Bullard Labs, Department of Earth Sciences, University of Cambridge, Madingley Road, CB3 0EZ, Cambridge, United Kingdom

ARTICLE INFO

Article history:
Received 19 September 2014
Received in revised form 17 March 2015
Accepted 18 March 2015
Available online 8 April 2015

Editor: P. Shearer

Keywords:
Makran subduction zone
interseismic coupling
InSAR

ABSTRACT

Estimating the extent of interseismic coupling along subduction zone megathrusts is essential for quantitative assessments of seismic and tsunami hazards. Up to now, quantifying the seismogenic potential of the eastern Makran subduction zone at the northern edge of the Indian ocean has remained elusive due to a paucity of geodetic observations. Furthermore, non-tectonic processes obscure the signature of accumulating elastic strain. Historical earthquakes of magnitudes greater than 7 have been reported. In particular, the 1945 Mw 8.1 earthquake resulted in a significant tsunami that swept the shores of the Arabian Sea and the Indian Ocean. A quantitative estimate of elastic strain accumulation along the subduction plate boundary in eastern Makran is needed to confront previous indirect and contradictory conclusions about the seismic potential in the region. Here, we infer the distribution of interseismic coupling on the eastern Makran megathrust from time series of satellite Interferometric Synthetic Aperture Radar (InSAR) images acquired between 2003 and 2010, applying a consistent series of corrections to extract the low amplitude, long wavelength deformation signal associated with elastic strain on the megathrust. We find high interseismic coupling (i.e. the megathrust does not slip and elastic strain accumulates) in the central section of eastern Makran, where the 1945 earthquake occurred, while lower coupling coincides spatially with the subduction of the Sonne Fault Zone. The inferred accumulation of elastic strain since the 1945 earthquake is consistent with the future occurrence of magnitude 7+ earthquakes and we cannot exclude the possibility of a multi-segment rupture (Mw 8+). However, the likelihood for such scenarios might be modulated by partitioning of plate convergence between slip on the megathrust and internal deformation of the overlying, actively deforming, accretionary wedge.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Along most subduction zones, interseismic subsidence and coseismic uplift of the forearc occur above major seismic asperities along the megathrust. Therefore, geodetic measurements allow us to infer regions of subduction megathrusts that are coupled (i.e. accumulating elastic strain) from those that are creeping (e.g. Savage, 1983). The spatial distribution of coseismic slip during recent subduction zone earthquakes has been inferred to correspond to regions that appear highly coupled during the interseismic period (e.g. Chlieh et al., 2011; Moreno et al., 2011). In addition, it appears that regions of the megathrust that slip seismically and those creeping in the post-seismic phase are mutually exclusive (e.g. Hsu et al., 2006; Baba et al., 2006; Murray and Langbein, 2006). Therefore, identifying portions of the subduction interface that slip seismically and those that appear to be highly coupled during the interseismic period is a primary step in the assessment of potential future earthquakes.

The 1000-km long Makran subduction zone extends from southern Pakistan to Iran, with the Himalayas to the east and the Zagros orogenic belt to the west (Fig. 1a). This subduction zone is bounded by the left-lateral Omacht Na Fault to the east and the right-lateral Minao-Zendan Fault to the west. Along this plate boundary, the Arabia and Ommara Plates subduct northward underneath the Eurasia Plate with a 3 to 4 cm/yr convergence.