
Lecture 3

Heat flow

3.1 Conservation of energy

One of the recuring themes in this class and in all of physics is that of
conservation of energy. You have all heard this before: energy can be neither
created nor destroyed, it can merely change place or form (philosophical
quandry: ok, then, where did it come from to begin with?). In problems of
gravitation and dynamics, we will always be considering changes from kinetic
to potential energy; in chemistry, changes from internal chemical energy to
heat. Today, we won’t even consider energy changing form, merely flowing
from one place to another. The energy that we will deal with is in the form
of heat.

Heat energy is completely equivalent to any other type of energy. To
prove this, I should be able to give you an example of a system changing, for
instance, kinetic energy into heat and then back into kinetic energy with no
loss of the initial kinetic energy. In practice, however, I can’t give you a good
intuitive example of this because, in fact, conversion between heat energy
and other types of energy is remarkably inefficient. If everything worked
perfectly, however, you should be able to construct a Rube Goldberg-esqe
device where, for example, a very insulated bucket of hot water is placed in a
cold room under a turbine, which begins to turn because the water heats the
air immediately above it, and the hot air rises. The turbine is then attached
to a rod which sits inside an insulated bucket of cold water. As the turbine
turns, the friction between the water and the rod will heat the water. In the
absence of the many real-life losses, the second bucket of water would heat
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up to the initial value of the first bucket of water (assuming equal amounts
of water in each). Thus heat energy was converted to kinetic energy and
then back to heat energy. While this example seems absurd, it is remarkably
close to the process by which we get electricity from coal-burning or nuclear
sources!

Of course, anyone paying close attention should object that even in a
perfect world my above example wouldn’t work right because I haven’t taken
into account the increase in entropy. Objection duely noted.

3.2 The diffusion equation

In the case of heat energy, conservation of energy does not just mean taking
all of the heat energy from one object and placing it in another. More
important is the case of heat energy flowing within a single object. For
example, if one end of an iron rod is placed in a fire, energy will be transferred
from the fire to the iron, but then energy will flow through the iron rod to
the end not in the fireplace (and if you are holding the iron rod, energy
will begin to flow into your hand until you drop the rod). This process of
moving heat energy through material is called conduction. (Other methods
of transferring heat are convection and radiation). Conduction takes place
via a process called diffusion which we will now examine.

3.2.1 Pots of water

Consider three equal sized pots of water. The first is held at 50 C, and the
last is held at 0 C. The middle pot is originally at 0 C, also. The three pots
are touching, so they can transfer heat energy amongst themselves. How does
energy flow? Clearly, because the middle and last pots are the same temper-
ature, they will exchange no energy, but because the first pot is hotter than
the second, energy will flow from it to heat the second. How much energy?
It is an experimentally determined fact, and also an intuitively obvious one,
that the heat flow is proportional to the difference in temperature. That is,

dE12

dt
= −α(T1 − T2)

dE23

dt
= +α(T1 − T2).
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What is the proportionality constant α in this context? It must have the units
of energy/time/temperature and be related to how fast the energy flows.

As soon as the second pot begins to heat, however, it will rise in temper-
ature. The amount of temperature rise is

∆T =
∆E

mc

where m is the total mass of water in the pot and c is the specific heat of
the water, in units of energy/mass/temperature, or joule/kilogram/degree
Kelvin. That is, c is the number of Joules of energy required to raise one
kilogram of a substance by 1 degree K. For water, c = 4.184 × 103 J/kg/K.
You might be more used to doing heat energies in caolories instead of joules.
One calorie is simply 4.184 joules, so conversion between the units is simple.
We’ll use joules because they are the appropriate MKS unit, which makes
converting between heat energy and any other type of energy simpler.

From the equations above, we clearly see that we are going to obtain
a differential equation for the temperature of pot 2 as a function of time.
Writing the two relevent equations:

dE

dt
= α(T1 − T ) + α(T3 − T ) (3.1)

dT

dE
=

1

mc
, (3.2)

where now the Es and T s are a function of time (except that we specified
that T1 and T3 were held constant) and we have dropped the subscript “2.”.
If we now multiply both sides of equation 3.1 by eqaution 3.2 we get (by
canceling dEs)

dT

dt
=

α

mc
(T1 + T3 − 2T ).

This equation is our friend the 1st order linear DE, and we can solve it by
inspection to obtain

T =
T1 + T3

2
+ C exp(−2αt/mc).

Once we constain C so the T (0) = T1, we find that the form of the solution
is such that the temperature exponentially approaches the average of T1 and
T2 with an e-folding time of mc/2α. Notice that we could have guessed that
the final temperature was going to approach the average of T1 and T2: only
at this temperature does no net energy flow from pot 2 (dE/dt = 0 because
as much flows from pot 1 as flows to pot 3).
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3.2.2 An iron bar

We now generalize the problem to one where, instead of 3 discreet pots of
water, we have a continuous iron bar with a temperature held constant at
each end and equal to T (x, t) in between. Note something very important
here: this is the first time we have had a function that is a function of two
separate variables. Before we have always simply had N(t) or P (z) or T (t).
This additional variable is going to add additional complications, as we shall
see.

First, let’s again calculate the energy flow for an iron bar with tem-
pertature T (x, t), mass per unit length of µ, and specific heat of c. For a
particular point x, we define the net flux of energy to be f(x, t), where by
flux, we mean total energy flowing through the point, not the net energy
change at a point. Think of the flux as the amount of water flowing in a
river, while the net energy change at a particular point is equivalent to the
net change in depth of a point in the river as a function of time. In fact, we
can write the net energy change at point x as the difference in flux between
point x and point x + ∆x:

dε

dt
= f(x − ∆x) − f(x + ∆x),

where ε is the energy per unit length of the rod. Again, using the river
analogy, if the flow at point x is different than the flow at point x + ∆x, it
must mean that the depth of the water at point x is changing, so

dε

dt
= − df

dx
∆x. (3.3)

Now we again know the change in temperature associated with this change
in energy:

∆T =
∆ε

∆xµc

or we can rewrite
dT

dt
=

1

µc∆x

dε

dt
,

and, substituting into equation 3.3, we obtain

µc
dT

dt
= − df

dx
.
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Now we go back to the observed fact that we started off with: that the heat
flow between any two points is proportional to the temperature difference
between the two points, so

f = −k
dT

dx
,

where k is now the thermal conductivity, in units of J/sec/K (in general,
thermal conductivity will have units of J/sec/K/m, but in our special 1-D
case, the length disappears). We now have

µc
dT

dt
=

d

dx
(k

dT

dx
),

which is the one-dimensional diffusion equation.

If k is not a function of x (which it might be!), we can rewrite the equation
as

µc
dT

dt
= k

d2T

dx2
.

3.2.3 Partial derivatives

In doing the diffusion equation we have been mathematically sloppy in one
subtle way. Each time we had a derivative, say dT/dx, we wrote a full
derivative instead of a partial derivative, ∂T/∂x. What’s the differnence?

You remember from calculus that, for f(x, y), a partial derivative implies
differentiating f by x only where x appears explicitly in f . For example,
if f(x, y) = x3 + y2, then ∂f/∂x = 3x2. The full derivative, on the other
hand, is df/dx = 3x2 + 2y(dy/dx). Now, as long as x and y are completely
independent variables, dy/dx = 0 and df/dx = ∂f/∂x, but for any function
that is a function of two variables, we have to allow, in principle at least, for
the possibility that the variables may be related.

In practice, the situation where the variables are not independent will
rarely come up. For example, in the diffusion equation above, how could t
and x be related in any way?

The single most common time when the difference between full and par-
tial derivatives is crucial, however, is in the case of transforming some cal-
culation to a moving coordinate system (or doing a calculation for a moving
object). This situation occurs frequently in fluid mechanics, where the differ-
ence between the full and partial derivatives is the physical difference between
calculating rates of change of variables that move with the flow or that are
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fixed in space. We can even transform our diffusion equation into one where
the full/partial difference matters by considering, instead of a fixed bar, a
moving bar. Let’s assume the same bar as before is now moving with velocity
v, so that x = x0 + vt. Now x and t are explicitly linked! The fact that bar
is moving does not change the solution to the equations, as long as we solve
them in the moving frame, but if we solve them in a stationary frame, the
formal solution will end up being not T (x, t), but T (x0 + vt, t), which will
have a different functional form.

In general, when you have a function of two or more variables, all deriva-
tives will be partial derivatives unless there is something peculiar going on.
So, when in doubt, make it a partial.

3.2.4 3D

We can easily generalize the 1D diffusion equation to three dimensions (again,
assuming the k is constant):

ρc
∂T

∂t
= k(

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
) = k∇2T,

where now k has the standard units of J/sec/m/K and we have the standard
diffusion equation.

If you’ve seen the notation before, then you recall that

∇2 ≡ (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
).

If you haven’t seen the notation before then you have now: ∇ is called “del”
and ∇2 is called “del squared.” It is nothing more than a shorthand notation.

Sometimes in such an equation, we do not care about the time-variable
behavior of the solution, only the steady-state solution. Steady state means,
of course, that all time derivatives must be zero, so the diffusion equation
simply becomes

∇2T = 0

(this equation comes up frequently in physics and is called Laplace’s equa-

tion), or in one-dimension
∂2T

∂x2
= 0
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The one-dimensional equation is easily solvable by simply integrating
twice:

∫
∂2T

∂x2
=

∫
0 dx

∂T

∂x
= C1

T = C1x + C2

Note something different going on here: we suddenly have two constants
of integration rather than just one. This situation is a consequence of the
fact that we have a second-order differential equation. For each order of the
differential equation, a new constant of integration appears (simply because
we need that many integrations to solve the equation). How do we handle
the two constants of integration? Again, with two boundry conditions. In
the case of our example, we stated that the ends of the iron rod were held
fixed at temperatures of 100 and 50 C. If the iron rod is 1 meter long, then
the steady-state solution is

T (x) = −50x + 100,

where x is in meters and T is in degrees C. The very reasonable seeming
solution is that the temperature changes linearly between the two fixed end
points.

(As an aside, why did we never consider the steady state solution to the
population equation? Clearly, if we have an equation of the form dN/dt =
−αN and we seek a solution with dN/dt = 0, our only solution is N = 0.
Indeed this is a steady-state solution (if you start with zero population you
stay with zero population), but certainly not a very exciting one!)

The full three-dimensional case is harder to solve simply because we have
many more possible constaints to satisfy.

3.3 Solutions to the diffusion equation

Though the diffusion equation is not particularly complicated looking, its full
solution can require some fairly sophisticated techniques. In fact, unlike the
case of the linear first order DE, no general solution to the problem exists at
all. To solve the equation will in general actually mean just finding one of
the known solutions that actually fits the boundry values of the problem.
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Figure 3.1: A solution to the wave equation. This solution can be thought
of as the temperature response to an instantaneous energy pulse, say a laser
blast at one spot.

Let’s then examine some of the known solutions of the equation. And,
of course, at any time we could simply use numeric methods to solve the
problem.

3.3.1 A heat pulse

Consider the function

T (x, t) = (4πkt)−1/2 exp(−x2/4kt). (3.4)

Plug this into the diffusion equation and you will find that it is a valid solution
(and not one that you should have guessed ahead of time!). Let’s examine,
just for interest’s sake, the general behavior of the solution. In figure 3.3.1
we plot f(x, t) = t−1/2 exp(−x2/t) for various values of t. The solution is
one where an initially highly confined temperature pulse (say a spot that has
been blasted by a laser) diffuses outward through the surrounding medium.
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Because heat is neither gained nor lost anywhere in this problem, the total
heat must be conserved. The total heat is

E = Tc = c
∫

+∞

−∞

T (x, t) dx.

You should recognize equation 3.4 as one of a standard gaussian distribution,
and recall that its integral over ±∞ is a constant, and, in fact, we have defined
the constant in front of equation 3.4 so that the integral equals 1. Thus for
any time t, the integral of equation 3.4 equals 1. As the pulse spreads out
in time, the total change in temperature caused by the pulse stays constant
(actually the total heat stays constant, and assuming c is uniform, the total
temperautre deviation remains constant).

This solution to the diffusion equation can be used any time the initial
conditions warrant the solution. When does this happen? Only when the
temperature distribution at some time t is actually equal to equation 3.4. So
what good is this to anyone? The short answer is “not much.” The main
point is just to illustrate an interesting feature of the solution, that of the
constant diffusing heat. The long answer, however, is that we can use this
solution to find another solution which is important for general use.

3.3.2 Summing solutions

If f(x,t) is a solution of the diffusion equation and g(x,t) is an independent
solution then

∂f

∂t
= k

∂2f

∂x2
and

∂g

∂t
= k

∂2g

∂x2
.

We can add these two equation together to get

∂f

∂t
+

∂g

∂t
= k

∂2f

∂x2
+ k

∂2g

∂x2

or simply
∂(f + g)

∂t
= k

∂2(f + g)

∂x2
.

Now we see that g(x, t) + f(x, t) is also a solution to the diffusion equation.
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This example illustrates a general solution, that a sum of any number of
solutions to the diffusion equation is also a solution to the diffusion equation.
But if a sum of solutions is a solution, it should also be true that an integral
of solution, which is just a sum of infinitely finely spaced solutions, should
also be a solution.

Let’s then integrate equation 3.4 to get a new solution to the diffusion
equation:

T (x, t) = (4πkt)−1/2

∫ x

0

exp(−x′2/4kt) dx′

which reduces to

T (x, t) =
1√
π

∫ u

0

ds exp(−s2) =
1

2
erf u

or
T (x, t) = T0erf(x/(4kt)1/2)

where we have introduced the error function, erf(x). The error function
is a standard function, just like sine, cosine, or log, that is tabulated in
books, included on calculators, and incorporated in computer languages (in
MATLAB, type: e=erfc(1.), for example, and you will get 0.842701).
Figure 3.3.2 shows what the error function looks like. The two important
properties, which make the error function a good function to try to use to
match initial conditions, can be seen in the figure,

erf(0) = 0 lim
x→∞

erf(x) = 1.

When is the error function a useful solution to the diffusion equation? Any-
time the initial condition along some boundry of the diffusion equation is
equal to a constant. We’ll solve such a problem in the next lecture.
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Figure 3.2: The error function.
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