Gigantism in unique biogenic magnetite at the Paleocene–Eocene Thermal Maximum

Dirk Schumanna,b, Timothy D. Raubb, Robert E. Koppd, Jean-Luc Guerquin-Kerne,f, Ting-Di Wue,f, Isabelle Rouilléb,g, Aleksy V. Smirnovb, S. Kelly Searsb,g, Uwe Lücktenb, Sonia M. Tikoob, Reinhard Hessee, Joseph L. Kirschvinkb, and Hojatollah Valib,g,1

aDepartment of Earth and Planetary Sciences, McGill University, 3450 University Street, Montréal, QC, Canada H3A 2A7; bFacility for Electron Microscopy Research, and cDepartment of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC, Canada H3A 2B2; dDivision of Geological and Planetary Sciences, California Institute of Technology, MC 170-25 1200 East California Boulevard, Pasadena, CA 91125; eDepartment of Geosciences and Planetary Sciences, California Institute of Technology, MC 170-25 1200 East California Boulevard, Pasadena, CA 91125; fDepartment of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931-1295; and gNanobiology Marketing, FEI Company, Eindhoven, 5600KA, Eindhoven, The Netherlands

Edited by James Zachos, University of California, Santa Cruz, CA, and accepted by the Editorial Board August 29, 2008 (received for review April 15, 2008)

We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene–Eocene Thermal Maximum (PETM) in a borehole at Ancora, NJ. Aside from previously described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 microns long and hexaoctahedral prisms up to 1.4 microns long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition, lattice perfection, and oxygen isotopes consistent with an aquatic origin. Electron holography indicates single-domain magnetization despite their large crystal size. We suggest that this was a result of a thick suboxic zone with high iron bioavailability—a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming—drove diversification of magnetite-forming organisms, likely including eukaryotes.

Magnetofossils, geologically preserved magnetic particles produced most abundantly by magnetotactic bacteria, are recognized by distinct physical and chemical traits and provide a record of past microbial ecosystems (1–3). Two recent papers (4, 5) report an extraordinary magnetofossil “Lagerstaetten” in lowermost Eocene kaolinite-rich clay sediments deposited at subtropical paleolatitude in the Atlantic Coastal Plain of New Jersey. The sediments were deposited ~55.6 million years ago during the Paleocene–Eocene Thermal Maximum (PETM), an ~100- to 200-ky interval of ~5–9°C abrupt global warming (5, 6). Kopp et al. (4) and Lippert and Zachos (5) use ferromagnetic resonance (FMR) spectroscopy (7), other rock magnetic methods, and transmission electron microscopy (TEM) of magnetic extracts to characterize magnetite crystals from boreholes at Ancora (ODP Leg 174AX) (Fig. 1) and Wilson Lake, NJ, respectively. These sediments contain abundant, ~40- to 300-nm cuboidal, elongate-prismatic, and bullet-shaped magnetofossils, sometimes arranged in short chains, resembling crystals in living magnetotactic bacteria (4, 5). Despite scarcity of intact magnetofossil chains, the asymmetry ratios of the FMR spectra reflect a profusion of elongate SD crystals and/or chains (FMR and Rock Magnetic Properties in supporting information (SI) Text). It is not obvious whether the unusual abundance of magnetofossils reflects extraordinarily favorable preservation conditions or whether ecological changes enhanced growth of magnetotactic bacteria. Here we address both conundrums by reporting the discovery from these same sediments of exceptionally large and novel biogenic magnetite crystals unlike any previously reported from living organisms or from sediments.

Results and Discussion

Scanning Electron Microscopy (SEM) and TEM. SEM and TEM analysis of the magnetic extracts reveals the presence of two large and previously unknown types of magnetofossils and uniquely large exemplars of a more common morphology. The first type of particle has a spearhead-like shape with flattened, bilateral biomineralization | electron microscopy | magnetofossil

![Figure 1: Lithological profile of late Paleocene and early Eocene strata of ODP Leg 174AX, Ancora, NJ, plotted together with the fine quartz sand fraction, \(^{13}C_{\text{inorganic}} \), and FMR parameter \(\alpha \). The profile shows the abundance of different types of magnetite particles at examined sample horizons (lithological information from Miller et al. [37]). Fine quartz sand fraction and \(^{13}C_{\text{inorganic}} \) are from Kent et al. (38). FMR parameter \(\alpha \) were taken from Kopp et al. (4).](https://www.pnas.org/cgi/content/full/0803634105/DCSupplemental)

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. J.Z. is a guest editor invited by the Editorial Board. See Commentary on page 1759S.

1To whom correspondence should be addressed. E-mail: vali@deps.mcgill.ca.

This article contains supporting information online at www.pnas.org/cgi/content/full/0803634105/DCSupplemental.

© 2008 by The National Academy of Sciences of the USA
Symmetry (Fig. 2A–C). These particles were possibly disaggregated from originally agglutinated, remarkable cellular armor (Fig. S1 and Movie S1). Their morphology can be described by a geometric three-axis coordinate system (Fig. 2D) that is not coincident with the crystallographic system. Length (axis 1) ranges from 2.0 to 3.8 µm, width (axis 2) ranges from 1.0 to 1.4 µm, and thickness (axis 3) ranges from 0.65 to 0.7 µm. The apex sector is characterized by well pronounced crystal faces resembling a six-sided pyramid-like structure.

High-resolution TEM (HRTEM) of whole particles and of an ultrathin section prepared by focused ion beam (FIB) milling reveals that the spearhead-like particles are single, defect-free crystals of magnetite (i.e., magnetofossils) (Fig. 3 and Fig. S2b and c). The {111} lattice fringes have a d-spacing of 0.48 nm and are nearly parallel to the long axis (axis 1) of the particle (Fig. 3B and Fig. S2c). Another set of lattice fringes with d-spacing of 0.296 nm are almost parallel to less-pronounced crystal faces at the tip (Fig. 3D) and tail sections of the particle and correspond to (220) fringes. HRTEM images show sets of lattice fringes with d-spacing of 0.25 nm parallel to four pyramidal sides that correspond to the {311} family of magnetite.

Middle and "stalk" sectors of some particles show circumferential steps on the crystal surfaces (Fig. 2A, B, D I and II) indicating ontogenetic crystal growth from "stalk" toward crystal "tip" (Fig. 4). These steps, ranging from 10 to 29 nm, are pronounced.

Fig. 2. SEM images and drawings showing the morphological features of the spearhead-like magnetite particles. (A and B) SEM images of spearhead-like magnetite particles with pronounced growth steps in the stalk and lower part and well developed crystal faces near the spearhead tip. (C) SEM image of the spearhead-like particle reveals bilateral symmetry. Note abundant conventional magnetofossils surrounding the gigantic spearhead-like particles. (D) Models of idealized crystal habits of the spearhead-like particle shown in A constructed on the basis of the lattice fringe data obtained by HRTEM. These models show the top view (I), lateral view (II), back view (III), and front view (IV).

Fig. 3. Low-resolution TEM image of a random projection of a spearhead-like particle (A) and a HRTEM image (B) of the tip of the same crystal showing one set of (111) lattice fringes parallel to the long axis of the crystal. High-resolution images of the tip area also reveal the presence of (220) crystal faces.

Fig. 4. Allometry of the spearhead-like particles. Variance in stalk width and spearhead width are both ∼3.6% of those respective means. Variance in spearhead length, by contrast, is ∼15% of mean spearhead length, suggesting that spearhead-like particles continue to grow lengthwise after they reach a (perhaps itinerantly) maximum width and maintain a constant proportion between stalk and spearhead. This allometry is consistent with the sense of elongation required by assumed epitactic growth forming the tipward-convex, surface “step” features on both stalk and spearheads.
in some particles. Numerous crystal fragments show parting along a (220) plane (Fig. S3), consistent with rare observations of large, untwined magnetite crystals under stress (8). Energy dispersive x-ray spectroscopy shows chemical composition consistent with magnetite (Fig. S4).

Whereas the dimensions of the spearhead-like particles are outside the SSD range for magnetite parallelepips (Fig. 5), electron holographic analysis reveals a uniform, centrally symmetric magnetization with electromagnetic field lines emerging at the tip of the particle (Fig. 6). Although the appearance of SSD structure might reflect a metastable state imparted during the magnetic concentration process, we hypothesize that the crystal morphology could stabilize the SD state by inhibiting the development of “flower structures.”

The second novel crystal morphology observed in these samples is spindle-like and tapered at each end (Fig. 7). This type of particle has a width of 0.5 μm and a length of up to 3.3 μm.

Both ends of the particle exhibit well pronounced crystal faces resembling a six-sided trapezohedron. The third crystal habit is an extremely long, defect-free hexoctahedral crystal with well developed crystal faces and a length-to-width ratio as high as ~10 (Figs. 5 and 8). Lattice-fringe images and energy dispersive x-ray spectroscopy analyses (Fig. S4) of both the second and third types of particle also suggest chemical composition and structure consistent with magnetite. Their size and shape imply that these crystals lie within the SSD stability field of magnetite (Fig. 5). Crystal type three appears to be similar to elongate hexoctahedral magnetosome crystals described from living bacteria and magnetofossils but stretched up to ~1.4 μm in length. By contrast, the largest such crystals described from bacteria of Quaternary Bahamian sediments are ~170 nm long (9), and the longest magnetofossil reported previously is ~580 nm in length (M. W. Hounslow, personal communication). Unlike most bacterial magnetite, however, these particles have been observed not in chains, but rather in isolation or in aggregates of originally isolated crystals (Fig. S4 and Fig. S2a).

Oxygen Isotopes. To constrain the crystallization temperature of the spearhead-like particles, we measured the oxygen isotopic composition of individual crystals using NanoSIMS (Fig. 9). The primary goal of this analysis was to assess whether the particles could have been formed at the low temperatures necessary for a biogenic origin. Assuming that the magnetic particles were formed at low temperature in equilibrium with calcite produced by benthic foraminifera, we used the calcite–water fractionation equation of O’Neil et al. (10) and the bacterial magnetite–water fractionation of Mandernack et al. (11) to derive a calcite–magnetite fractionation equation and estimate a paleotemperature of magnetite formation (Table S1). Benthic foraminifera of the taxa Cibicidoides from the PETM interval at Wilson Lake, NJ, have a δ18O of -3.0‰ (12). By coupling

Fig. 5. Domain-stability diagram of the upper limit for SD magnetization calculated from micromagnetic models of prismatic magnetite crystals (39). Interaction effects and chain arrangements increase this upper size limit, and shape anisotropy stabilizes SD behavior for any given maximum crystal size. The largest magnetosome crystals yet observed from living bacteria are indicated: the largest cuboidal particles from strain Itaipu-1 (40) and the largest hexoctahedral prisms and bullet particles from the Ammersee and Moorsee, respectively (9). The large, unusual PETM magnetofossils of elongate hexoctahedral and spindle-like morphologies are mostly stable single domain (SSD) or metastable single domain (MSD). We hypothesize that unusual crystal-tip truncations of these forms impede development of the metastable flower-like structure magnetization. Spearhead-like magnetite crystals are of a size that should be multidomain, attesting to the likelihood of their nonmagnetotactic biological function. Other considerations suggest that these crystal forms may have been used for protection by iron-biomineralizing eukaryotes.

Fig. 6. Contour images obtained from the magnetic contribution to the holographic phase for the spearhead-like magnetite particles. (A) Center-symmetric, uniform-magnetized particle. (B) Electromagnetic field lines emerging from the tip of the same particle.

Fig. 7. SEM images show tapered, spindle-like magnetite particles with well developed crystal faces. The crystal morphology suggests a six-sided trapezohedron habit (Inset in B).

Fig. 8. TEM images show an overview (A) and lattice fringes (B) of elongated hexoctahedral magnetite particles. The lattice-fringe image (B) of the tip of an individual crystal (Inset) shows two sets of defect-free (111) lattice fringes with d-spacings of 0.48 nm.
carbonate and magnetite isotopic measurements (Table S1) we calculated a 1-standard deviation (σ) temperature range of −5° to 34°C. Owing to the imprecision of current measurement techniques, we are unable to improve upon prior benthic temperature estimates, but our calculated 1σ temperature range (−5° to 34°C) is consistent with previous estimates from carbonate oxygen isotopes and from the TEX-86 organic biomarker proxy (24–34°C) (12). Our mean 618O SMOW estimate of −1.2‰ is distinct from that of metamorphic magnetite (approximately +15‰) in regional highlands at Franklin Furnace and Sterling Hill, NJ (13).

Speculation on Origin and Function. Owing to the cubic crystal symmetry of magnetite, abiogenic magnetite formed at high temperature most commonly exhibits octahedral morphology. Unusual asymmetric habits and whiskers have been reported from exsolution processes, crystallization in anisotropic environments such as lava flows (14), and high-temperature, vapor-phase crystallization (15). Low-temperature anisotropic morphologies, however, are known only from biologically controlled systems (16). Magnetite biomineralization was originally discovered in chiton teeth (17), where magnetite provides a hard mineral for scraping limestone. It has subsequently been found in magnetotactic bacteria (18), algae (19), honey bees, homing pigeons, fish, and even the human brain (24). In all these latter cases, the morphology, size, structural arrangement, and even the magnetic sensory function resemble closely those of particles produced by magnetotactic bacteria that may show isometric cuboctahedral and elongate hexoctahedral habits, as well as irregular and elongate bullet, tooth, and arrowhead-like shapes.

Because the spearhead- and spindle-like particles exhibit a complex, nonequidimensional, anisotropic morphology and low-temperature isotopic composition, an abiogenic origin is unlikely. Allometric inferences bolster the case for biogenicity (Fig. 4). Variation of both stalk width and spearhead width of spearhead-like particles spans only 3.6% of the mean values for those measures. Spearhead-length variance, by contrast, exceeds 15% of mean spearhead length. Uniform three-dimensional growth, even at different rates along long and short axes, could not produce this asymmetric size variance. This pattern would be produced, however, if the spearhead-like particles continued to grow lengthwise after reaching a (possibly itinerant) maximum width, with constant proportion of stalk and spearhead widths. Such allometric growth is also consistent with the sense of elongation required by assumed epitactic growth forming the tipward-convex, surface “step” features on both stalk and spearheads (Fig. 2 A and B).

Because the size of these crystals is the same as or exceeds the size of most bacteria, they are likely the products of eukaryotes. The single-crystal particles identified here have dimensions in the realm of skeletal elements, such as silica in diatoms and radiolaria, carbonate or silica in sponge spicules, or iron phosphates in holothurian spicules (21), although they are chemically and morphologically dissimilar in detail from any modern or other fossil analogues (Paleontology Searching for Modern Analogues in SI Text). We are unaware of any other biogenic structure of these sizes and shapes. The biological function of these new magnetite particles is uncertain; the organisms that formed them could have used the particles for their magnetic properties or, as in chiton teeth (17), for their hardness. A few apparently intact, tip-outward assemblages of the spearhead-like particles (Fig. S1 and Movie S1), and the inference of shear-induced parting of individual spearhead crystals (Fig. S3), suggest that these forms may have served a structural purpose, perhaps as protective armor surrounding an ∼5- to 10-μm cell.

Environmental Implications. The abundance of fossil magnetotactic bacteria on the Atlantic Coastal Plain during the PETM (4, 5) could be explained by enhanced production, enhanced preservation, or both. The presence of novel, large, presumably eukaryotic magnetofossils argues that changes in growth conditions are a major part of the explanation. Considering that bacterial magnetofossils are also present (although less abundant) and well preserved in the sediments below and above the PETM clay (Fig. S5) as well as in a sand lens within PETM clay (4), the presence of these new forms in the PETM clay is unlikely to be a preservation artifact. There is also no evidence for extensive dissolution of magnetofossils, similar to that observed in some marine sediments, within or outside of the PETM (3). No modern or other fossil analogs of the organisms that formed the giant magnetofossils have yet been found (Paleontology Searching for Modern Analogues in SI Text).

Together with the bacterial magnetofossils, the presence of these new magnetite forms suggests that global warming at the PETM drove locally dramatic changes in the biogeochemical cycling of iron, resulting in an enlarged, meter-scale suboxic zone (22, 23). Just as the ready availability of iron sulfide at hydrothermal vents has permitted the evolution of animals using magnetic iron sulfides to construct protective structures (24), the high availability of iron in a thick suboxic zone may have fostered the growth, and perhaps evolutionary radiation, of magnetotactic and other iron-biomineralizing organisms.

Several lines of evidence suggest a global trend toward enhanced surface productivity during the PETM. *Apectodinium*, a dinoflagellate taxa that has a heterotrophic motile stage believed to be associated with higher productivity, spreads globally from a low-latitude source during the PETM (25). Bathyal sediments from several sites in the Tethys, Atlantic, and Southern Oceans show an increase in biogenic barium, a tracer of organic matter export from surface to deep water (26, 27). [On the other hand, nanofossils from bathyal sediments in the central Pacific indicate a transition from a late-Paleocene oligotrophic environment to a highly stressed, presumably severely nutrient-limited environment during the PETM (28)].

At Wilson Lake, consistent with enhanced nutrient delivery to the coastal plain, oligotrophic nanofossil taxa are replaced with mesotrophic taxa for the entire duration of the PETM (28). Notably, the *Apectodinium* acme occurs during the onset of the carbon isotopic excursion, the first ∼15% of the ∼16-m interval.

![Fig. 9. Images of a spearhead-like particle prepared by focused ion beam milling. False-color NanoSIMS images of the 18O (A), 16O (B), and FeO (C) composition of one of the spearhead-like magnetite particles milled in half by the FIB. Bright colors (white or yellow) indicate higher amounts of the measured oxygen isotopes or iron oxide. The SEM image (D) shows the copper grid with two spearhead-like particles mounted with tungsten to the grid. The analyses were performed on the particle outlined by the circle.](image-url)
recording the carbon isotope excursion (29). A short-lived spike in organic carbon content (to ~0.8 wt%) occurs near the end of this interval, followed by a dip to near-zero organic carbon comparable in duration to the *Apectodinium* acme, which is in turn followed by a return to the relatively low late Paleocene organic carbon levels of ~0.4 wt% (5).

Although magnetotactic bacteria can thrive in the meter-scales oxic–anoxic transition zones of eutrophic water columns (e.g., refs. 30 and 31), such environments are not ideal for the preservation of magnetofossils. The organic-rich sediments deposited under such conditions promote reductive dissolution (1, 31). In contrast, suboxic but organic-lean sediments provide ideal conditions for both the growth and preservation of magnetofossils.

Possible analog environments, combining high surface productivity with low-organic carbon density sediments and meter-scale sedimentary suboxic zones (32), are provided by tropical shelves fed by energetic river systems, such as the Amazon (33). Because of intense tropical weathering, the supply of reactive iron in such settings is approximately double that of temperate deltaic environments (34). Physical reworking, which facilitates the reoxidation of iron and thereby enhances its effective supply as an oxidant, also plays an important role in establishing a thick suboxic zone. During the PETM, similar dynamics may have developed in an Appalachian deltaic system along the Atlantic Coastal Plain of New Jersey, although the energy level of the delta need not have been as great as that of tropical systems, given evidence for a low supply of terrestrial organic carbon (12) and thus reduced oxidant demand. In addition to the sedimentary and nanofossil evidence for enhanced runoff discharge to the New Jersey continental shelf (12, 29), this analog is also consistent with the intense weathering conditions that promote kaolinite development (35). Abrupt establishment of such an environment indicates the power of a ~5–9°C global warming event to reshape sedimentary and biological processes.

Methods

Transmission Electron Microscopy (TEM) Analysis. Magnetic separates were extracted (2) from 15 samples of the Ancora drillcore (ODP Leg 174A) ranging from 165.20 m to 173.15 m in depth (Fig. 1). The separates were transferred onto 300-mesh Cu TEM grids with carbon support film and studied by using a FEI Tecnai G2 F20 X-Twin TEM at an accelerating voltage of 200 kV. The electron holograms were obtained at a biprism voltage of 105 V by using the Lorentz lens and recorded with a Gatan Ultrascan 1000 CCD camera at the nominal microscope magnification of ×1,500. The contour images of the magnetic contribution to the holographic phase were obtained according to the procedure of Midgley (36).

Elemental Mapping (O, Fe) and Oxygen Isotope (18O/16O) Analysis by Nanoprobe Secondary Ion Mass Spectrometry (NanoSIMS). Oxygen isotope ratios were measured by using a NanoSIMS-50 microprobe (Cameca) at an operating current of ~1 pA. Ion images for 16O⁺ and 18O⁺, as well as for FeO⁺ (for monitoring Fe distribution), were generated by using an image definition of 128 × 128 pixels while a Cs⁺ beam was scanned over a field of view of 5 μm × 5 μm. The images acquired through NanoSIMS analysis for 16O⁺ and for 18O⁺ were used to calculate the isotopic ratio of 18O/16O pixel-to-pixel. To provide precise measurements of the isotopic ratio of 18O/16O on the magnetite crystal, a long acquisition time was used. This was achieved by acquiring 95 frames with a dwell time of 3 ms per pixel for each frame. The total counting time per pixel was ~60–75 ms. The acquired image series was then processed by using ImageJ, a public domain Java Image processing program. For each frame, a new image representing the ratio of 18O to 16O for each pixel was generated by dividing the image of 18O⁺ by the one of 16O⁺. During this operation, all of the 16O⁺ images were corrected with the dead-time loss (44 ns) of the detection system owing to the high ion intensity for this major isotope. SIMS analysis generally requires the use of a reference standard for quantitative measurement. In this analysis, we used the surface oxide on the copper mounting grid as a reference. Owing to the limited number of measurements, there is a wide range of isotopic variation. The relative error for a single measurement is 0.58% (or 5.8%). To achieve a precision of 1‰, 30 measurements for a total time of 8–9 h would be required.

Off-Axis Electron Holography. Off-axis electron holography was performed in a FEI Tecnai G2 F20 X-Twin TEM at an accelerating voltage of 200 kV. The electron holograms were obtained at a biprism voltage of 105 V by using the Lorentz lens and recorded with a Gatan Ultrascan 1000 CCD camera at the nominal microscope magnification of ×1,500. The contour images of the magnetic contribution to the holographic phase were obtained according to the procedure of Midgley (36).

ACKNOWLEDGMENTS. We gratefully acknowledge comments from Boswell Wing, Adam Maloof, Nicholas Swanson-Hysell, and Harunur Rashid and technical assistance from Jeannie Mui. We are grateful to the editor and three anonymous reviewers for their constructive comments, which improved the final version of the manuscript. This work was supported by grants from the Natural Science and Engineering Research Council of Canada and the Fonds Québécois de la Recherche sur la Nature et les Technologies to the Centre for Biorecognition and Biosensors (PLV) and the NASA Exobiology program (J.L.K.). Samples were provided by the Ocean Drilling Program, which is sponsored by the U.S. National Science Foundation and by participating countries under management of Joint Oceanographic Institutions, Inc.

Supporting Information

Schumann et al. 10.1073/pnas.0803634105

SI Text

FMR and Rock Magnetic Properties. Two traits of FMR spectra are generally indicative of magnetofossils: sharpness of peaks and asymmetry (1). Peak sharpness (reflected in the empirical α parameter) is due to biological control and should be similar for bacterial magnetite and the novel forms. Asymmetry is controlled in large part by the effective anisotropy field, B_{α}. Proper calculation of B_{α} can be done using a chain-of-spheres model α la Moskowitz et al. (2), a calculation that has not yet been done. For a uniaxial single-domain particle, $B_{\alpha} = \mu_0 M_r \Delta N$, where μ_0 is the magnetic permeability of free space, M_r is saturation magnetization, and ΔN, the difference by long-axis parallel and long-axis perpendicular demagnetization factors, is a function of the width/length ratio. For the fields at which resonance occurs, the particles in a chain are expected to rotate in parallel; thus, we can approximate B_{α} of a chain by $\mu_0 M_r \Delta N$, where ΔN is calculated as though the chain is a single particle and $1-f$ is the fraction of this “particle” that constitutes empty space and therefore has a zero saturation magnetization. A single uniaxial particle with a width/length ratio of 0.12 (B_{α} of ≈ 250 mT) is therefore essentially indistinguishable under FMR from a chain of approximately eight touching equidimensional particles, or a chain of $\approx 18 \sim 40$-nm equidimensional particles with an ≈ 5-nm interparticle spacing. By volume, the average bacterial magnetofossil observed by Kopp et al. (3) had a width/length ratio of 0.6 and a length of ≈ 185 nm. One such particle, when isolated, would have B_{α} of 94 mT. A chain of five such particles touching, or ≈ 11 such particles with ≈ 20-cm interparticle spacing, would generate a B_{α} of ≈ 250 mT. Unfortunately, the novel magnetofossils do not appear to have a distinctive magnetic fingerprint recognizable in bulk rock magnetic properties, as can be seen by consideration of their expected FMR and rock magnetic properties.

Coercivity analysis is a potentially more fruitful approach. Moskowitz et al. (2) present data indicating that magnetite chains remagnetize not through parallel rotation but through fanning. A chain of particles therefore demagnetizes at lower field strengths than would a single particle of the same size, although at higher fields than isolated particles [as demonstrated directly through the mutant studies of Kopp et al. (4)]. FORC analysis of the PETM clay at Ancora shows a small fraction of particles with room-temperature coercivities of $\approx 120 \sim 140$ mT, consistent with magnetic particles with width/length ratios of less than ≈ 0.14 and volumes greater than $\approx 0.002 \mu m^3$ [i.e., lengths greater than ≈ 470 nm; values are calculated following Diaz-Ricci and Kirschvink (5)]. In isolation, the average coercivity of the observed bacterial particles should be ≈ 44 mT, and the largest and most elongate bacterial particles [length of ≈ 440 nm, width-to-length ratio of 0.20, as plotted in figure 5 of Kopp et al. (1)], should have a coercivity of ≈ 108 mT. However, this coercivity would be enhanced by chain alignment, so even the high coercivity tail of the FORC diagram cannot unambiguously be interpreted as the product of the observed unusually large biogenic magnetite.

Paleontology Searching for Modern Analogues. We searched the Treatise on Invertebrate Paleontology (B, Protista 1, Charophyta (6); C, Protista 2 volumes 1 and 2, Sarcodina, chiefly “Thecamoebians” and Foraminiferida (7); D, Protista 3, Protozoa, chiefly Radiolaria, Tintinnina (8); E, Archaeocyatha, Porifera (9); E revised volume 1, Archaeocyatha (10); E revised volume 2, Porifera (11); E revised volume 3, Porifera (12); F, Coelenterata (13); F supplement 1, Coelenterata, Rugosa and Tabulata (14)) for modern or ancient morphological analogues to the presumed eukaryote “armored” by spearhead-like magnetite particles shown in Fig. S1 and Movie S1.

Although numerous species control or induce calcium carbonate mineralization in radial “spikes” (either as parts of a skeletal framework or, dissimilar to the PETM magnetofossils, as globsules containing inner microvasculatures) in Protista (specifically within Rotaliina, Calcarinidae, Hankeninidae, Astrolithidae, Staurophoridae, Pentaphoridae-Cubosphoridae, Astrophyidae, Phacodiscidae-Coccodiscidae, Pararhuramminiae, Euchitonidae, Thecocorythidae, Castancellidae, Chapmannia, and Pogidiinae), there are no organisms whose radial outgrowths share the wholly anisotropic (convex “stalk” and concave “head”) shape and the range of within-organism size and shape variation exhibited by the “Magnetic Death Star” eukaryote imaged in Fig. S1 and Movie S1.

Porifera spicules can grow to macroscopic scales. Some sponges (especially among Choiaidae, Plakinidae, and Pachastrellidae) produce complex or sharp spicules, sometimes composed of multiple, radiating, or reticulated elements; and originally calcareous or siliceous spicules may be pseudomorphed or else coated by iron oxide (especially goethite, as in ref. 6). All sponge spicules, however, are templated by an internal protein framework interwoven with layers of biominal crystallites, clearly distinct from the wholly inorganic, single-crystal morphology of the novel biomagnetites described here from the New Jersey PETM magnetofossil Lagerstätte.

Fig. S1. (a) Conventional TEM image of spearhead-like magnetite particles arranged into a radial, flower-like structure. All particles are aligned with their stalk oriented toward the center of the structure. (b) Cross section of a 3D reconstructed tomography image shows that the central region of the radial, flower-like structure appears opaque and may also be iron-enriched. The tomogram was calculated from a tilt series of images (Movie S1) of the radial, flower-like structure using IMOD (16). (c) Still image of the tomogram (Movie S1).
Fig. S2. TEM images of elongated prismatic and spearhead-like magnetite particles. (a) A cluster of elongated prismatic magnetite particles (center) and a part of a spearhead-like magnetite particle (upper part of the image) along with scattered bacterial magnetite. (b) TEM image shows a focused ion beam (FIB) milled ultrathin section of a spearhead-like magnetite particle that was thinned from both sides to a thickness of 100 nm parallel to the long axis and mounted to the grid with tungsten (black area in the center). (c) Two sets of lattice fringes with a d-spacing of 0.48 nm (111) and one with 0.42 nm (200), respectively. The (111) and (200) diffraction planes are indicated by arrows in the Inset of c. The location of c is marked by the box in b.
Fig. S3. SEM images of parting in spearhead-like particles along (220) planes. The parting perpendicular to the long axis of the spearhead-like particle occurs at different locations and suggests that the lower part of these particles, including the stalk, is composed of disk-like subunits. Because the whole particle shows single crystal structure and no lattice disruption is observed at the parting (see Fig. S2c), epitactic-like growth may be responsible for the disk-like morphology. Parting might be produced by shear stress imposed upon the crystals, either in vivo, attesting to a hypothesized protective biological function and/or cytoskeletal fastening of the stalk ends in contrast with extracellular free spearhead-like tips, or by diagenetic compaction.
Fig. S4. Energy dispersive x-ray spectroscopy analysis of a spearhead-like particle (a), a spindle-shaped particle (b), an elongated hexoctahedral particle (c), and a known bacterial magnetofossil (d). The analyses show that the novel crystals (a–c) are composed of iron and oxygen, which is consistent with the composition of bacterial magnetofossils (d). No other impurities are associated with these particles. The Cu and C peaks in the spectra are from the TEM grid. The EDS analysis does not provide any stochiometric information on the oxidation state of the Fe in these particles. It most likely, however, that these particles are oxidized to maghemite as shown in magnetofossils from marine environments (17).
Fig. S5. TEM images of bacterial magnetofossils extracted from sediments above (165.81 m) (a and b) and below (173.15 m) (c and d) the PETM clay. They show different size and shape of well preserved bacterial magnetofossils, including prismatic, bullet-shaped, and diamond-shaped.
Movie S1. Using a FEI Titan 300-kV FE-STEM equipped with a Gatan Ultrascan 1000 4k \times 4k CCD camera, a movie was constructed from a complete tilt series of images recorded every 2° from –70° to 66° of a radially arranged, spearhead-like magnetite particle. Images were aligned by using IMOD (16) after selecting 16 features as fudicial markers.
Table S1. Paleotemperature calculations

<table>
<thead>
<tr>
<th>(^{18}\text{O}/^{16}\text{O})</th>
<th>SE</th>
<th>(\delta^{18}\text{O}_{\text{Spear}}) (VSMOW)</th>
<th>(\delta^{18}\text{O}_{\text{Cib}}) (VPDB)</th>
<th>(\delta^{18}\text{O}_{\text{Cib}}) (VSMOW)</th>
<th>(10^3 \times \ln \alpha_{\text{Cc-Mt}})</th>
<th>Temperature, K</th>
<th>Temperature, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002859</td>
<td>0.006463</td>
<td>Minimum</td>
<td>-4.390</td>
<td>-3</td>
<td>27.817</td>
<td>1.032</td>
<td>31.837</td>
</tr>
<tr>
<td>Mean</td>
<td>-1.167</td>
<td>-3</td>
<td>27.817</td>
<td>1.029</td>
<td>28.605</td>
<td>285.84</td>
<td>12.69</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.056</td>
<td>-3</td>
<td>27.817</td>
<td>1.026</td>
<td>25.384</td>
<td>306.86</td>
<td>33.71</td>
</tr>
</tbody>
</table>

Calcite–magnetite fractionation equation: \(10^3 \times \ln \alpha_{\text{Cc-Mt}} = 1.99 \times (10^6/T^2) + 4.25 \). \(\delta^{18}\text{O}_{\text{Spear}} \), weighted mean of \(^{18}\text{O}/^{16}\text{O} \) of the spearhead-like magnetite particle; SE \(\delta^{18}\text{O}_{\text{Spear}} \), standard error of the weighted mean; Spear, spearhead particle; Mt, magnetite; Cc, calcite; Cib, Cibicidoides; VSMOW, Vienna standard mean ocean water; VPDB, Vienna PeeDee belemnite. Values for Cibicidoides are from ref. 18; conversion of \(\delta^{18}\text{O}_{\text{VPDB}}(\text{Cibicidoides}) \) to \(\delta^{18}\text{O}_{\text{VSMOW}}(\text{Cibicidoides}) \) is from ref. 19.