The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction

Alon Amrani a,*, Andrei Deev b, Alex L. Sessions c, Yongchun Tang b, Jess F. Adkins c, Ronald J. Hill d, J. Michael Moldowan e, Zhibin Wei f

a Institute of Earth Sciences, The Hebrew University, Jerusalem 91904, Israel
b Power, Environmental, and Energy Research Institute, 738 Arrow grand Circle, Covina, California 91722, USA
c Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, USA
d Marathon Oil Company, Houston, TX, USA
e Department of Geological & Environmental Sciences, Stanford University, Stanford, CA 94325, USA
f Exxon Mobil Exploration Company, 222 Benmar Drive, Houston, TX 77090, USA

Received 31 May 2011; accepted in revised form 20 December 2011; available online 28 January 2012

Abstract

Compound-specific analyses of the 34S/32S isotope ratios of individual organosulfur compounds in Upper Jurassic oil and condensate samples from the Smackover Fm. reveal differences of up to ~50‰ between compounds. There is a clear distinction between oils altered by thermochemical sulfate reduction (TSR) versus those that are not. Oils that did experience TSR exhibit significant 34S enrichment of benzothiophenes (BTs) compared to dibenzothiophenes (DBTs), while in unaltered oils these compounds have similar isotopic compositions. The δ34S values of BTs are close to those of sulfate-bearing evaporites of the Smackover Fm., whereas the δ34S values of DBTs are spread over a wider range and gradually approach those of the BTs.

Gold-tube hydrous pyrolysis experiments using three representative oils show that isotopic alteration readily occurs under TSR conditions and can significantly affect the δ34S values of individual compounds. Our results indicate that BTs can be a sensitive tracer for TSR as they form readily under TSR conditions, with large 34S enrichments relative to the bulk oil. In contrast, DBTs exhibit relatively small changes in δ34S, preserving their original δ34S values longer than do BTs because of their greater thermal stability and slow rate of formation. We propose that comparison of the δ34S values of BT and DBT can be used to detect TSR alteration of oils from the very early stages up to highly altered oils. The approach should find numerous uses in petroleum exploration, as well as for understanding the basic reaction mechanisms and kinetics of thermochemical sulfate reduction and secondary sulfur incorporation into oils.

© 2012 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Thermochemical sulfate reduction (TSR) to sulfide coupled with oxidation of hydrocarbons occurs in hot carbonate petroleum reservoirs (>110 °C) and in hydrothermal environments (Machel et al., 1995; Worden and Smalley, 2001). The process is thermodynamically favored and kinetically controlled yielding CO2, H2S, and highly refractory sulfur-rich solid bitumen (“pyrobitumen”) (Goldstein and Aizenshtat, 1994). TSR is one of the most important organic–inorganic interactions and it is well documented in many geologic environments from around the world (Orr, 1974, 1977; Worden and Smalley, 1996; Nöth, 1997; Machel, 2001; Cai et al., 2003; Seewald, 2003). TSR is detrimental to oil quality and produces high concentrations of H2S and CO2 in petroleum reservoirs. The toxicity and
Sulfur isotopes of BT and DBT as a proxy for TSR

2. EXPERIMENTAL

2.1. Model compounds and crude oils

2.1.1. Reagents and standard compounds

All chemicals were purchased from Sigma–Aldrich (St. Louis, MO) and are analytical grade (>97% purity) with no further purification. Reference gas SF₆ was purchased from Scott Specialty Gases (PA) as a 2% mixture in He.

The sulfur isotope reference materials NBS-127 (BaSO₄; δ⁳⁴S = 21.3%o) and IAEA-S-1 (Ag₂S; −0.3%o) were used in our EA-IRMS analysis (Hebrew University, Jerusalem) of H₂S (as Ag₂S) and were purchased from NIST (Coplen and Krouse, 1998; Qi and Coplen, 2003).

2.1.2. Crude oils

A series of oils and condensates were taken from various oil fields in the Gulf of Mexico. These samples included both TSR-altered and non-altered oils and condensates covering a broad range of thermal maturities. All were produced from the Upper Jurassic Smackover Formation at different depths, and experienced different thermal histories as suggested by their associated reservoir temperatures ranging from 87 °C to 160 °C (Table 1). A detailed description of the oils and their geological setting is provided by (Claypool and Mancini, 1989).

In addition, two other oils (from the Caspian Sea area and from Oman) were used for laboratory TSR experiments. Their geochemical characteristics are described elsewhere (Zhang et al., 2007). Briefly, the Caspian oil is a low-sulfur oil (0.5 wt.% S) produced from a Carboniferous-aged carbonate reservoir in an onshore field near the Caspian Sea in Kazakhstan. The oil has an approximate API gravity of 45, (SG = 0.80 g/mL) and contains no asphaltene fraction and 4% resins. The Oman oil is a high-sulfur (3.0 wt.%) oil produced from an onshore field in Oman, has an API gravity of 31.0, (0.88 g/mL), and contains 15.3% asphaltene and 7.5% resins.

The petroleum samples were injected with no pretreatment or polarity separation, i.e. as ‘whole oils’, into the GC-MC-ICPMS for δ⁳⁴S analysis of individual compounds.

2.2. Pyrolysis and TSR simulation experiments

All experiments were conducted in sealed gold tubes with an internal diameter of 3.5 mm and wall thickness of 0.45 mm. Each tube was between 60–70 mm long, giving a total reactor volume of approximately 0.5 mL. Prior to loading the samples, the open-ended tubes were heated to 600 °C to remove any residual organic material. One end of each tube was then crimped and sealed using an argon arc welder. Solid anhydrite (CaSO₄), silica (SiO₂), and talc (3MgO·4SiO₂·H₂O) powders were weighed and transferred to the tubes by a funnel. Liquid organic reactants (oils and model compounds) and aqueous solutions were loaded into the tubes with an auto-pipette. The quantities of reagents used were: 5 mg oil; 0, 10, or 100 mg CaSO₄; 30 mg talc; 30 mg silica; and 450 mg water containing 5.6 wt.% MgCl₂, 0.56 wt.% CaSO₄, and 10 wt.% NaCl.

The solubility of CaSO₄ in water is positively correlated with salinity of the aqueous solution (Blount and Dickson, 1969). Therefore, we prepared a solution with relatively high ionic strength (3.91 M) by adjusting the NaCl concentration. We used the Mg²⁺–talc-silica system as a mineral buffer at elevated temperatures to keep the in-situ pH in a narrow range (pH ~3). The approach used to regulate in-situ chemical conditions for our study relies on chemical reactions that are known to proceed rapidly at the temperature and pressure conditions of the experiments (Saccocia...
Table 1

Bulk geochemical data for oil and condensate samples used in this study (after Wei et al., 2012).

<table>
<thead>
<tr>
<th>Fielda</th>
<th>Depth (m)</th>
<th>Temp (°C)</th>
<th>H2S (g/mL)</th>
<th>S (wt.%)</th>
<th>δ34S (‰)</th>
<th>δ13C (‰)</th>
<th>DBTsb ppm</th>
<th>Thiadiamc ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSR unalteredb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey Creek</td>
<td>4056–4062</td>
<td>93</td>
<td>0.757 (55.5)</td>
<td>0.0</td>
<td>0.8</td>
<td>−0.9</td>
<td>−23.93</td>
<td>431</td>
</tr>
<tr>
<td>Wallers Creek</td>
<td>4738–4762</td>
<td>126</td>
<td>0.833 (38)</td>
<td>0.0</td>
<td>0.1</td>
<td>−12.5</td>
<td>−23.94</td>
<td>192</td>
</tr>
<tr>
<td>Blacksheer</td>
<td>5142–5146</td>
<td>138</td>
<td>0.828 (39.4)</td>
<td>0.0</td>
<td>0.1</td>
<td>5.6</td>
<td>−23.90</td>
<td>270</td>
</tr>
<tr>
<td>Slightly TSR altered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatters Pond</td>
<td>6005–6011</td>
<td>160</td>
<td>0.756 (55.6)</td>
<td>0.6</td>
<td>0.1</td>
<td>5.1</td>
<td>−23.0</td>
<td>81</td>
</tr>
<tr>
<td>Cold Creek</td>
<td>6049–6058</td>
<td>160</td>
<td>0.757 (55.5)</td>
<td>0.0</td>
<td>0.1</td>
<td>−0.6</td>
<td>−23.70</td>
<td>118</td>
</tr>
<tr>
<td>TSR altered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appleton</td>
<td>4230–4242</td>
<td>137</td>
<td>0.781 (49.7)</td>
<td>2.0</td>
<td>0.35</td>
<td>10.7</td>
<td>−24.30</td>
<td>691</td>
</tr>
<tr>
<td>Vocation</td>
<td>4588–4591</td>
<td>127</td>
<td>0.775 (51.1)</td>
<td>5.7</td>
<td>0.3</td>
<td>6.4</td>
<td>−22.50</td>
<td>803</td>
</tr>
<tr>
<td>Huxford</td>
<td>4835–4841</td>
<td>132</td>
<td>0.774 (51.2)</td>
<td>6.1</td>
<td>0.2</td>
<td>5.7</td>
<td>−22.80</td>
<td>983</td>
</tr>
<tr>
<td>Chatom</td>
<td>5303–5340</td>
<td>138</td>
<td>0.787 (48.3)</td>
<td>16.7</td>
<td>1</td>
<td>12.2</td>
<td>−21.70</td>
<td>1564</td>
</tr>
<tr>
<td>Big Escambia Creek</td>
<td>5043–5067</td>
<td>143</td>
<td>0.828 (39.4)</td>
<td>20.0</td>
<td>1.4</td>
<td>24</td>
<td>−20.85</td>
<td>2345</td>
</tr>
<tr>
<td>South State Line</td>
<td>5683–5719</td>
<td>151</td>
<td>0.863 (32.4)</td>
<td>31.4</td>
<td>0.8</td>
<td>21</td>
<td>−20.13</td>
<td>6313</td>
</tr>
</tbody>
</table>

a The oil samples are from the Smackover Fm. from different fields in the Gulf of Mexico (after Wei et al., 2012).
b The degree of TSR alteration is based on the present S isotope compound specific study.
c DBTs refer to dibenzothiophene and its alkylated groups including methyl-, dimethyl- and trimethyl-dibenzothiophenes.
d Thiadiam stands for thiaiodomendoids including thiaadamantanes (trimethyl- and tetramethyl-thiaadamantanes), thiaadamantanes (thiaadamantane, methyl-, dimethyl- and trimethyl-thiaadamantanes) and thiatriamantanes (thiatriamantane, methyl-, dimethyl- and trimethyl-thiatriamantanes).

and Seyfried, 1990; Seewald et al., 2000). More details regarding the mineral buffer approach are given by Zhang et al. (2008).

After loading the chemicals into gold tubes, the tubes were flushed with Ar for 3 min to remove air. The open end of the tube was crimped and welded, while the closed end remained submerged in liquid nitrogen (−196 °C) to trap volatiles created during the welding process. Individual sealed gold tubes were subsequently placed in separate stainless-steel autoclaves and inserted into a pyrolysis oven. Pyrolysis experiments were conducted under isothermal conditions at a temperature of 360 °C for 10–180 h. Temperature was controlled to within 1 °C of the set value, and was monitored using a pair of thermocouples secured to the outer wall of each autoclave. Constant hydrostatic confining pressure was maintained at approximately 24.1 MPa (3500 psi) by a water pump to prevent rupturing of the gold tubes at elevated temperatures and to eliminate possible variations as a function of pressure. When the desired reaction time was reached, the stainless steel autoclave was withdrawn from the oven and rapidly cooled to room temperature by quenching in water. Once the autoclaves were depressurized, the gold tubes could be recovered for detailed analysis of their contents.

The gold tubes were pierced in a glass tube that was filled with 4–5 mL of 4:1 hexane/dichloromethane to above the piercing point such that all escaping gas (mainly H2S) bubbled through the solvent. The liquid and gold tubes were then transferred into a glass vial. The gold tube was cut open from both ends and in the middle and inserted back into the vial to allow the solvent to contact the inside of the gold tube. The vial was then closed and shaken by hand for a minute and soaked for several minutes before the solvent was collected and concentrated under a gentle stream of N2. The concentrated sample was then injected into the GCMS and GC-MC-ICPMS without further purification.

2.3. Instrumentation

Details of the instrument set-up including schemes are presented in (Amrani et al., 2009). The GC-ICP-MS system employed here consists of an Agilent 6890 GC equipped with a split/splitless injector that is coupled to a Thermo Scientific Neptune multicollector ICP-MS via a heated transfer line. Faraday detectors were positioned to simultaneously collect 32S+, 33S+, and 34S+, and the mass spectrometer was operated in medium resolution. It was tuned to maximize the 32S signal while minimizing 16O2 isobaric interference. The system was operated in a ‘dry’ plasma condition, i.e. with no aqueous vapor added to the gas streams. Relevant GC and ICP-MS parameters are listed in Table 2.

2.3.1. Calibration and data processing

Results of isotopic analyses are expressed in conventional δ34S notation as per mil (‰) deviations from the VCDT standard:

\[\delta^{34}S = \left(\frac{^{34}R_{\text{sample}}}{^{34}R_{\text{std}}} \right) - 1 \]

where \(^{34}R \) is the integrated \(^{34}S/^{32}S \) ion-current ratio of the sample and standard peaks.

Calibrated isotope ratios were obtained by comparison of analytes to SF6 reference gas peaks in the same chromatogram. Precision of \(\delta^{34}S \) values for SF6 peaks in the present study was better than 0.3‰, which agrees well with the expected precision of their peak sizes (1–1.2 V s) according to our previous study (Fig. 5, Amrani et al., 2009). Accuracy was assessed each day of analysis by measuring...
organosulfur standards (DBT, C_{10}-SH, C_{12}-SH, and 4,6-diethyl(DBT)) with known $\delta^{34}S$ values. We used relatively low concentrations (10-30 pmol, producing 0.5-1.5 V s ^{34}S peak areas for each injection) of the standard compounds to match the size of typical peaks in petroleum samples. Average results for these external standards, using DBT as the reference compound (IRMS value: 3.3 ± 0.2‰), were: C_{10}-SH, −5.9 ± 0.5‰, n = 15 (IRMS value: −6.8 ± 0.4‰); C_{12}-SH, 30.0 ± 0.8‰, n = 9 (IRMS value: 30.6 ± 0.6‰); 4,6-diethyl(DBT), −3.2 ± 0.5‰, n = 5 (IRMS value: −3.5 ± 0.2‰). The calibrated $\delta^{34}S$ value of the SF$_6$ reference gas measured against the DBT reference compound was −1.9‰ (±0.5‰, 1σ standard deviation) and we used this value to calibrate analytes in the same chromatogram.

Data processing employed algorithms that are implemented in VisualBasic code within Microsoft Excel (Ricci et al., 1994; Sessions et al., 2001). Ion currents were integrated by the Neptune software (v. 3.1.0.27) in 189-ms increments and exported to Excel in ASCII format. Chromatographic peaks were defined using the m/z 32 data stream with a starting slope of 0.2 mV s$^{-1}$ and ending slope of 0.4 mV s$^{-1}$, and this peak definition was transferred to all three data channels (i.e. m/z 32, 33, and 34) without adjusting for time shifts caused by isotope chromatography, which are negligible. Background signals were estimated independently for each data channel by averaging 20-30 points preceding each peak, depending on the complexity of the chromatogram. Peak areas (i.e. integrated ion currents) were then calculated with background subtraction, raw ion-current ratios ($^{34}S/^{32}S$) were calculated from peak areas, and calibrated $\delta^{34}S$ values were obtained by comparison to the ion-current ratios for SF$_6$ reference gas peaks in the same chromatogram.

2.3.2. Estimation of measurement uncertainties
Analyses of external standards yielded precision for $\delta^{34}S$ values of better than 0.3‰, and external accuracy of better than 0.9‰. Nevertheless, crude petroleum samples present additional analytical difficulties that make the estimation of accuracy for these samples more difficult than for cleanly-separated standards. The dense and noisy chromatograms, wide dynamic range of peak sizes, coelution of peaks, and the matrix effect that is created by non-sulfur hydrocarbons (HC) all complicate the situation and degrade precision and accuracy. We have previously shown that precision is significantly reduced by coelution of non-S-bearing hydrocarbons when the ratio of hydrocarbons to OSC is more than 10:1. Even so, accuracy was only slightly affected by the HC matrix even at a ratio of 200:1 (Amrani et al., 2009).

For the current samples, we estimated precision by running duplicate (or in some cases triplicate) injections and this data is presented as a Supplementary Table S1. In general, BTs have worse precision than do DBTs, mainly because of their relatively low abundance. Nevertheless, the mean standard deviation of $\delta^{34}S$ values for all compounds was typically better than 1‰ (1σ). In a few cases with moderate coelutions, it exceeded 2‰ (1σ). For cases with severe coelutions, or very low compound abundance, we integrated groups of related peaks (such as all methyl-BT isomers) together to yield a single composite $\delta^{34}S$ value. Experience from other compound specific isotope analyses suggests that more reliable results are obtained by this approach (Sessions, 2006), and indeed precision was typically better than 1‰ for these grouped peaks.

The accuracy of compound-specific isotopic measurements in a crowded chromatogram is very difficult to constrain quantitatively, because it depends heavily on isotopic contrasts between coeluting peaks. Given that we have not observed large differences in $\delta^{34}S$ for adjacent peaks, and based on results for external standard compounds, we conservatively estimate the accuracy of our analyses of petroleum samples to be better than 2‰. This uncertainty is more than an order of magnitude smaller than the variations that we observe between samples.

2.3.3. Identification of peaks and standard compounds
There are multiple isomers of each DBT, BT, thiophene, and labile sulfur compound (LSC) structure. It is difficult to positively identify each of these isomers since reference materials are not commercially available for many of them, especially the alkylated BTs. Where possible, we identified specific compounds by comparison of retention times to authentic standards. In other cases we identified compounds by comparison of the elution order and peak height to published data (Depauw and Froment, 1997; Garcia et al., 2002). In some cases where the abundance of OSC is very high – such as the case for DBTs in the Big Escambia Creek and state Line oils – it was possible to identify compounds by GCMS (Agilent 6890 N/5975B equipped with

Table 2
Operating parameters for the GC/MCICPMS system employed in this study.

<table>
<thead>
<tr>
<th>Gas Chromatograph</th>
<th>Agilent 6890</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillary column</td>
<td>HP DB-5, 30 m x 0.25 mm x 0.25 μm</td>
</tr>
<tr>
<td>Injector</td>
<td>S/SL, 300 °C</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>He, 1.4 mL/min</td>
</tr>
<tr>
<td>Oven temperature</td>
<td>60 °C (5 min), 10 °C/min, 300 °C (10 min)</td>
</tr>
<tr>
<td>Program</td>
<td></td>
</tr>
<tr>
<td>Transfer line</td>
<td>330 °C</td>
</tr>
<tr>
<td>Reference/make-up</td>
<td>He, 7.7 mL/min</td>
</tr>
<tr>
<td>Mass Spectrometer</td>
<td>Thermo, Neptune</td>
</tr>
<tr>
<td>Coolant flow (Ar)</td>
<td>15 L/min</td>
</tr>
<tr>
<td>Auxiliary flow (Ar)</td>
<td>1 L/min</td>
</tr>
<tr>
<td>Sample gas flow (Ar)</td>
<td>1.55–1.65 L/min</td>
</tr>
<tr>
<td>Extraction voltage</td>
<td>2000 V</td>
</tr>
<tr>
<td>Resolution</td>
<td>Medium resolution, 5000 resolving power (m/Δm, 5%, 95%)</td>
</tr>
<tr>
<td>RF power</td>
<td>1200 W</td>
</tr>
<tr>
<td>Sample cone</td>
<td>Nickel 1.1 mm aperture</td>
</tr>
<tr>
<td>Skimmer cone</td>
<td>Nickel 0.8 mm aperture</td>
</tr>
<tr>
<td>Ion lenses</td>
<td>Optimized for sensitivity and peak shape</td>
</tr>
<tr>
<td>Detection system</td>
<td>Faraday cups</td>
</tr>
<tr>
<td>Integration time</td>
<td>0.189 s</td>
</tr>
</tbody>
</table>

Sulfur isotopes of BT and DBT as a proxy for TSR 155
Agilent DB5 (30 m × 0.25 mm × 0.25 μm) using the same GC oven conditions.

3. RESULTS

3.1. Bulk oil composition

Bulk parameters of the Smackover oils derived from published data (Claypool and Mancini, 1989; Wei et al., 2012) are presented in Table 1, and include reservoir temperature, carbon and sulfur isotope composition, sulfur content, density, and thiodiamondoid concentrations. This dataset is used to distinguish the degree of TSR alteration of the oils. Fig. 1 plots the bulk δ^{34}S values of Smackover oils as a function of coexisting H$_2$S concentrations in the wells. There is a good correlation between the two, which is usually indicative of increasing TSR alteration. This suggests that TSR-derived H$_2$S produced from δ^{34}S-enriched sulfate reacted with organic compounds in the oils and gradually changed their bulk δ^{34}S values (Claypool et al., 1980; Claypool and Mancini, 1989).

The δ^{34}S values of condensates from Chatom, Big Escambia Creek, and South State Line fields are δ^{34}S enriched compared with samples from other fields, and are similar to those of Jurassic anhydrite (Table 1). These samples are moderately or strongly altered by TSR as indicated close to Smackover depocenters at depths ranging from 5% to 25% (Table 1). These samples have more negative δ^{34}S values and little variation between individual compounds, and those that have more positive δ^{34}S values and large differences between individual compounds.

The first group of oils includes Turkey Creek, Blacksher, and Wallers Creek oils with δ^{34}S values that are probably close to their source kerogen. The differences in δ^{34}S between BTs and DBTs are relatively small, typically $<3\%_{\text{oo}}$. In contrast, in the second group of oils δ^{34}S values of BTs are significantly higher than those of DBTs, between 5% and 25% (Table 1). As the extent of TSR increases (Table 1), the isotopic contrast between BTs and DBTs is reduced and all compounds become δ^{34}S enriched (Fig. 2). Big Escambia Creek oil is the most δ^{34}S enriched with δ^{34}S values of 28–29% for BTs and 17.5–22.8% for DBTs. There are smaller differences within families of similar compounds, i.e., DBTs and BTs. DBT is consistently enriched in δ^{34}S relative to its methylated homologs, with differences between them reaching up to $\sim 9\%_{\text{oo}}$ in the case of the Chatom oil.

Hatters Pond and Cold Creek oils have high δ^{34}S values ($\sim 20\%_{\text{oo}}$) for BT while DBTs are significantly δ^{34}S depleted (down to $\sim 5.9\%_{\text{oo}}$). The abundance of BT peaks is relatively low, which can considerably degrade precision and accuracy. We therefore integrated all of the methyl-benzothiophene (MeBT) isomers together as a single peak to achieve a larger peak area ($\sim 0.5 \text{ V s}$).

In general, bulk δ^{34}S values of the oils are similar to those of the individual compounds (Fig. 2). There are, however, three oils (Turkey Creek, Wallers Creek, Blacksher) for which compound-specific δ^{34}S values deviate significantly from the bulk values. Interestingly, none of them are thought to be TSR altered, yet all show δ^{34}S enrichment in the bulk δ^{34}S value. The reason for this is not clear yet. A possible explanation is that GC-amenable compounds are quantitatively smaller than other organic sulfur fractions in oil such as asphaltene and polar (NSO) fractions. If these fractions are δ^{34}S enriched then the bulk δ^{34}S value could be determined mostly by them.

3.3. Pyrolysis experiments

Three types of pyrolysis experiments were conducted at 360 °C for three periods of time (20, 40 and 89 h) using a mineral buffer mixture of silica/talc (Zhang et al., 2008). The first used a limited amount of solid CaSO$_4$ (10 mg), in which more than 60% of the initial CaSO$_4$ was consumed after 89 h. In the second type of experiment we used a large excess of CaSO$_4$ (100 mg), where only few percent of CaSO$_4$ was consumed by the end of the longest reaction time. We refer to these experimental conditions as ‘low’ and ‘high’...
sulfate, respectively. The third type of experiment was a negative control, and comprised heating without CaSO₄ for comparison.

For our experiments, we synthesized CaSO₄ that has a δ³⁴S value (−5.3‰) that is distinct compared to those of the oils (up to 24‰), in order to demonstrate large δ³⁴S changes. In nature, the difference between the δ³⁴S of oils and CaSO₄ can be even larger, but is typically reversed, i.e. with the oil depleted in ³⁴S relative to sulfate. Three oils were chosen for these experiments with different geochemical characteristics and degrees of TSR alteration to study different aspects of the TSR process.

3.3.1. Caspian oil

The Caspian oil is a low-sulfur crude oil from the Caspian Sea area. It is a light crude oil that contains 0.5 wt.% sulfur with no asphaltene fraction and very low amounts of resins (4%), as described by Zhang et al. (2007). We analyzed this oil previously and suggested that it is in the earliest stages of TSR alteration based on S-isotopic differences between BTs and DBTs of about 30‰, and on the fact that the δ³⁴S values of LSC approached those of sulfate from evaporites in the reservoir (Amrani et al., 2009).

In negative control samples (no CaSO₄ added), the δ³⁴S values of the refractory S compounds (BTs and DBTs) did not change significantly (<3‰) compared to the unheated oil (Fig. 3a). Pyrolysis with CaSO₄ (i.e. TSR simulation) has a dramatic effect on the isotopic compositions of the organosulfur compounds, with S-isotopic differences reaching up to 28‰ compared with the unheated oil (Fig. 3a). These isotopic changes mainly affected the BTs, with δ³⁴S values that are approaching and eventually exceeding that of the CaSO₄ (−5.3‰, broken line in Fig. 3a). There are relatively small δ³⁴S changes for DBTs, up to 2–4‰ in the low-sulfate experiments and up to 7–9‰ in the high-sulfate ones, though they did change toward the δ³⁴S values of CaSO₄ as expected.
In the high-sulfate experiments, BTs are more depleted in 34S than CaSO$_4$, suggesting isotopic fractionation in the process. There are two possible steps at which fractionation may occur: (i) during H$_2$S generation from sulfate during TSR, and (ii) during the reaction of H$_2$S with organic compounds. Both effects could exist simultaneously. To further study this issue, we trapped H$_2$S that was generated in the gold tubes during TSR and analyzed it as Ag$_2$S by EA-IRMS. The results of these measurements are plotted in Fig. 3a, showing no fractionation for the low-SO$_4$ experiments and a δ^{34}S/H$_2$S fractionation is in the range of previous TSR studies at similar temperatures (Kiyosu and Krouse, 1993).

The δ^{34}S values of H$_2$S are close to those of BTs in the same samples. However, in the case of low CaSO$_4$ experiments, H$_2$S is depleted in 34S by $\sim 10\%_\text{oo}$ relative to BTs, and enriched in 34S by about $3\%_\text{oo}$ relative to BTs in the high CaSO$_4$ experiments. In both cases the reaction time did not significantly alter the isotopic composition of H$_2$S. These results show that most of the isotopic fractionation that is imprinted in OSC resulted from the reduction of sulfate to H$_2$S and subsequent reaction with organic compounds. Any fractionation in the formation of OSC by H$_2$S or elemental S is relatively small ($1–3\%_\text{oo}$) in agreement with previous laboratory studies (Amrani et al., 2006, 2011).

3.3.2. Oman oil

The Oman oil is sulfur-rich (3 wt.%), relatively immature, and has not been significantly affected by TSR. It contains high concentrations of LSC and low concentrations of BTs and DBTs, below our detection limit. The bulk δ^{34}S value of the oil is $15.7 \pm 0.7\%_\text{oo}$. The δ^{34}S values of the individual OSC compounds range between $\sim 10\%_\text{oo}$ and $20\%_\text{oo}$. Heating this oil with no CaSO$_4$ produced BTs with a narrow range of δ^{34}S values between $16\%_\text{oo}$ and $18.5\%_\text{oo}$ and only trace amounts of DBTs were formed, below our detection limit (Fig. 3b). Low-CaSO$_4$ experiments shifted the δ^{34}S values toward that of the CaSO$_4$, up to about $15\%_\text{oo}$ from the original values with positive correlation with pyrolysis time. Unlike the Caspian oil, there is only a small difference in δ^{34}S values between the individual compounds after TSR. High-CaSO$_4$ experiments exhibit a different behavior, where BTs reached more negative δ^{34}S values than CaSO$_4$ similar to the experiments with the Caspian oil. In these experiments, the δ^{34}S value of DBT is significantly higher than those of BTs. The experiments with longer pyrolysis time were not measurable due to a sulfur-containing unresolved complex mixture (UCM).

3.3.3. Big Escambia Creek oil

The Big Escambia Creek oil is in advanced stages of TSR alteration with a bulk δ^{34}S value of 24$\%_\text{oo}$ (Table 1) and relatively small S-isotopic differences between individual compounds (Fig. 3c). Unlike the Caspian oil, all of the OSC compounds in this oil – including DBTs – already reflect a 34S enriched composition due to TSR inputs. Big Escambia Creek oil contains an intermediate amount of sulfur (1.4 wt.%), between that of the Caspian and Oman oils.

![Fig. 3. δ^{34}S values of individual BTs and DBTs from pyrolysis experiments of (a) Caspian oil, (b) Oman oil, and (c) Big Escambia Creek oil. Parallel experiments were conducted for each oil with no CaSO$_4$ (negative control), with 10 mg CaSO$_4$ (‘low sulfate’), and with 100 mg CaSO$_4$ (‘high sulfate’). Broken line represents the δ^{34}S value of CaSO$_4$ that was added to the pyrolysis experiments. The δ^{34}S values of H$_2$S were analyzed by EA-IRMS as Ag$_2$S.](image-url)
As in the case of the Caspian oil, heating experiments did not significantly change the $\delta^{34}\text{S}$ values of the refractory compounds.

When heated in the presence of low amounts of CaSO$_4$ for 20 h, $\delta^{34}\text{S}$ values of BTs changed by about 15%, whereas DBTs did not. After 40 h, BTs changed by 25–30%, while DBTs changed by only 2–3%. As expected, high-CaSO$_4$ experiments increased the isotopic changes in BTs and after 40 h shifted the $\delta^{34}\text{S}$ values to below those of CaSO$_4$, with a total change of up to 35–40%. DBTs changed as well toward the CaSO$_4$ value but to a much smaller degree, <4%. The magnitude of these changes is between those of the Caspian and Oman oils, in accordance with the original sulfur content of the oils.

During heating experiments of all three oils, thermally labile sulfur compounds such as sulfides and thiols disappeared, and the chromatograms became dominated by more stable molecules – BTs and DBTs, as demonstrated by the Big Escambia Creek oil (Fig. 4a and b). In contrast, experiments in the presence of CaSO$_4$ showed increased

![Gas chromatograms](image_url)

Fig. 4. Gas chromatograms of Big Escambia Creek oil obtained by GC-MC-ICPMS (^{32}S trace) before and after hydrous pyrolysis experiments at 360 °C for 40 h. (a) Unheated oil, (b) Heated with no sulfate, (c) heated with low sulfate (10 mg), (d) heated with high sulfate (100 mg).
amounts of LSC (Fig. 4c and d). Under these conditions, BTs became much more abundant. This especially affected the lower molecular weight isomers such as MeBT and BT that were at low concentration in the unheated oil. At the early end of the chromatogram, there are also unidentified sulfur compounds, most of them probably LSC as evidenced by their disappearance upon heating (Fig. 4b).

The most abundant compound at a retention time of 8.4 min (“unknown TSR product”) is clearly formed during TSR and becomes the dominant species as TSR continues (Fig. 4d). We could not identify its structure by GCMS because there are significant non-sulfur hydrocarbon interferences in the TIC chromatogram around this retention time. None of our organic sulfur standards, including methylated...
thiophenes, matched its retention time. Attempts to isolate this compound by off-line liquid chromatography failed due to the low amount of OSC present in the gold tube and the high volatility of this compound. We speculate that this compound is likely thiaadamantane, as this is a well-known TSR product and has a single isomer with shorter retention time than BT (Wei et al., 2012). Further experiments with higher amounts of reactants are needed for a firm identification of this unknown compound. The δ34S value of the putative thiaadamantane is similar to the other LSC. In the unheated Big Escambia Creek oil the δ34S values of LSC were around 27–28‰ similar to BTs (Fig. 5a and b). This observation is valid for all TSR affected oils that were measured in the present study.

Multiple isomers of each parent structure (DBTs, BTs, thiophenes, and LSC) exist in these oils, as can be seen in Fig. 5. There are relatively small isotopic differences between related groups of isomers, typically 2–4‰. This could be the result of different mechanisms or timing of formation of the isomers. However, some of the minor differences within the same groups could also be caused by analytical error due to the low abundance and incomplete resolution of many of these peaks, especially in the case of BTs in low TSR altered oils. While the δ34S values of LSC and BTs are quite uniform, DBTs exhibit relatively large variations between ethylated DBT (4 ethyl, 6 methyl DBT) and the methylated DBTs (Fig. 5c), probably because of differences in their thermal stabilities.

4. DISCUSSION

4.1. Mechanisms controlling δ34S in individual organosulfur compounds

4.1.1. Mixed sources for H2S during TSR

Hydrogen sulfide in petroleum reservoirs comes from two main sources: (i) thermal degradation of LSC (including asphaltenes and NSO compounds), which results in an isotopic composition that is close to its parent oil (Orr, 1986; Idiz et al., 1990; Amrani et al., 2005), and (ii) reduction of sulfate minerals in evaporate deposits, resulting in an isotopic composition close to that of seawater sulfate (Machel et al., 1995). The mixing ratio between these two H2S sources will then determine the δ34S value of H2S in the reservoir. If this H2S mixture reacts with hydrocarbons, it will produce OSC compounds with intermediate δ34S values (Orr, 1974; Powell and Macqueen, 1984; Cai et al., 2001, 2003; Amrani et al., 2006). Laboratory and field data show that there is a positive correlation between OSC and H2S concentrations in petroleum reservoirs (Ho et al., 1974; Cai et al., 2003; Zhang et al., 2008; Wei et al., 2012).

The two sources of S are apparent in our experimental results (Fig. 3a and b). The low-sulfur (0.5 wt.%) Caspian oil responds immediately to addition of exogenous sulfur from TSR, resulting in a shift in δ34S of BTs sharply toward that of CaSO4 (Fig. 3a). In contrast, the ~6-fold higher sulfur content of the Oman oil significantly increases the amount of H2S released from the oil during heating (Zhang et al., 2007; Amrani et al., 2008). This H2S is strongly enriched in 34S (≈-16‰) relative to that from CaSO4 reduction (≈-5.3‰). As a result, the δ34S values of BTs in the TSR experiments using Oman oil are shifted towards CaSO4 to a lesser degree than are those from the Caspian oil. In the Oman oil experiments with high-CaSO4, the δ34S values of BTs approached the CaSO4 value (Fig. 3b). The extent of TSR is much higher and TSR-derived H2S is becoming increasingly important, thus the δ34S values of BTs are gradually approaching that of CaSO4 in the reservoir. Big Escambia Creek oil has intermediate S content relative to the Oman and Caspian oils (Table 1) and its isotopic response to TSR is intermediate as well (Fig. 3c).

4.1.2. Formation and degradation of OSC during TSR

The large S-isotopic variations between BTs and DBTs in petroleum samples that are observed in this study represent different responses to thermal stress and redox conditions. The main factor determining the isotopic composition of individual OSC is the mixing ratio between sulfur contained in OSC within the original oil and that from reaction with sulfate-derived H2S in the reservoir. This ratio in turn is controlled by the relative rates of formation and destruction of each OSC.

Loss of OSC is evident in our heating experiments of oils (with no CaSO4) that show a complete disappearance of LSC from all the oils (Fig. 4b). However, during TSR, the dynamic formation and degradation of LSC maintains a steady-state concentration that can be detected even after thermal treatment that is far beyond their chemical stability (Fig. 4c and d). Experiments with high partial pressures of H2S without TSR show similar formation of LSC, though under TSR their rate of formation is even higher (Amrani et al., 2008; Zhang et al., 2008). The δ34S values of LSC thus reflect the near-instantaneous composition of H2S in the reservoir, which in turn is controlled by the relative amounts of H2S derived from TSR and the parent oil.

BTs and DBTs remain largely intact under our hydrous pyrolysis conditions without CaSO4 present (Fig. 3a–c) because of their high thermal stability (Katritzky et al., 2001; Dartiguelongue et al., 2006). However, under the severe oxidative stress accompanying TSR, even these stable compounds can gradually degrade (Katritzky et al., 2001). At the same time, the rate of formation of BTs and DBTs increases significantly under TSR conditions, as demonstrated by the high concentration of BT in Smackover oils that experienced TSR compared with the non-TSR oils (Table 1). This suggests that substantial amounts of TSR-derived sulfur are added to the oils during TSR, and that this gradually masks the original δ34S of the oil (Fig. 2). However, Fig. 4 demonstrates that the ratio of BT/DBT is actually decreasing throughout this process. We infer that a large portion of the original BTs decomposed under our pyrolysis conditions. Thus the rapid formation and degradation of BTs, and corresponding short residence time in the oil, can explain the rapid changes in the δ34S values of BTs in response to TSR in our experiments (Fig. 3) and in petroleum reservoirs (Fig. 2).

In contrast, the δ34S values of DBTs change at a much slower rate (Figs. 2 and 3). Their thermal stability is greater, and they are not expected to degrade under normal petroleum reservoir conditions (Dartiguelongue et al., 2006).
This is due to the added aromatic character resulting from the extra fused ring on the DBT molecule (Smith and March, 2001). They are also slower to form as can be seen in the heating experiments (no CaSO₄) with Oman oil where DBTs were not detected while BTs were abundant (Fig. 3b). Nevertheless, there are some DBT compounds that behave differently, namely ethylated DBTs (and longer alkyl substituents). These compounds have lower thermal stability because they preferentially cleave at the β position to yield the methylated aromatic ring (Silverstein and Bassler, 1962). Therefore, they are expected to degrade rapidly and be replaced by TSR-derived compounds. This can be seen clearly in Fig. 5c, where 4-ethyl, 6-methyl DBT has more positive δ³⁴S values than other DBTs, and similar to BTs.

4.2. Implications for TSR assessment

Numerous parameters are used to assess TSR, including petrographic appearance, fluid and fluid inclusion composition, oil chemistry, and stable isotopes of carbon and sulfur (Machel et al., 1995). A highly aromatic and sulfur-rich solid bitumen is also diagnostic for TSR, but is applicable mostly where severe TSR has occurred (Kelemen et al., 2008, 2010). A promising approach to assess TSR has been developed in the last decade using sulfurized thiadiamantanes as molecular indicators (Hanin et al., 2002; Wei et al., 2007, 2012). However, reliable determination of the occurrence and extent of TSR still requires integration of most of these parameters, especially when TSR extent is low to moderate (Machel et al., 1995; Machel, 2001).

The present study suggests a new and highly sensitive way to diagnose TSR effects by measuring the S-isotopic composition of individual BTs and DBTs. This analysis can be done with whole oils with little pretreatment and without any off-line separation. Moreover, all the data needed to assess TSR is embedded within the oil itself, and there is no need to collect gases or minerals from the reservoir. Our data show that the S isotopic differences between BTs and DBTs, the most abundant organosulfur compounds in oils (Krein, 1993), are themselves diagnostic. At the onset of TSR, differences in δ³⁴S between BTs and DBTs are the largest. BTs rapidly adopt the δ³⁴S value of sulfate participating in TSR, whereas DBTs change more slowly. As TSR advances and more H₂S is generated, DBTs gradually change their δ³⁴S values toward sulfate as well, thus the fractionation between the two compounds decreases. Thiadiamondoid concentrations reflect the extent of secondary addition of S into oils, which is positively correlated with the extent of TSR (Wei et al., 2012). Fig. 6 plots thiadiamondoid concentrations versus fractionations between the average δ³⁴S values of all measured isomers of BTs and DBTs (Δ³⁴S(BTs−DBTs)). The specific isomers and their δ³⁴S values that were used for this calculation are present in Table S2 in the Supplementary data. In oils affected by TSR, there is a clear decrease in fractionation between BTs and DBTs with increasing thiadiamondoid concentration. For the later stages of TSR alteration that are represented by Big Escambia Creek and State Line oils, Δ³⁴S(BTs−DBTs) values are only slightly changed (~0% to 6‰) despite the large increase in thiadiamondoids. This is probably because OSC reached a steady state with H₂S in the reservoir. However, the Chatom oil seems to be anomalous as the thiadiamondoid concentration indicates that this oil is significantly TSR-altered while the Δ³⁴S(BTs−DBTs) values suggest only slight TSR-alteration. Previous studies indicated that Chatom oil is significantly TSR-altered (Claypool and Mancini, 1989; Rooney et al., 1995; Wei et al., 2012). At this stage we cannot explain this anomaly from the general trend of Δ³⁴S(BTs−DBTs)/thiadiamondoids, it clearly needs additional study.

Thiadiamondoid and H₂S concentrations in Hatters Pond and Cold Creek oils are similar to those of the non-TSR altered Turkey Creek, Wallers Creek, and Blackshier oils (Table 1 and Fig. 6). Indeed previous studies had considered Hatters Pond and Cold Creek oils to be unaffected by TSR based on these and other geochemical data (Claypool and Mancini, 1989; Rooney et al., 1995; Wei et al., 2012 see also Table 1). However, our results (Figs. 2 and 6) reveal substantial ³⁴S fractionations (~20–23‰) between BTs and DBTs in these oils, similar to those observed in other TSR-altered oils but markedly different from those unaffected by TSR. Both Hatters Pond and Cold Creek reservoirs are at high temperature (160 °C), which is consistent with this suggestion. The fact that H₂S concentration is low (Hatters Pond) or absent (Cold Creek) cannot discount the possibility of early TSR alteration. Such low intensities of TSR are expected to produce very low H₂S concentrations that can react rapidly with metals and petroleum hydrocarbons at reservoir temperature of 160 °C. Laboratory experiments have shown that even when H₂S cannot be detected, TSR already affects hydrocarbons and produce BTs and DBTs (Amrani et al., 2008, 2011). We therefore suggest that BTs in both oils are recording the very early onset of TSR.

![Fig. 6. ³⁴S fractionation between BTs and DBTs isomers (Δ³⁴S(BTs−DBTs)) as a function of total thiadiamondoid concentration (Wei et al., 2012), which includes thiadamanates (trimethyl- and tetramethyl-thiadiamantanes), thiadamanates (thiadiamantane, methyl-, dimethyl- and trimethyl-thiadiamantanes) and thiatriamantanes (thiatriamantane, methyl-, dimethyl- and trimethyl-thiatriamantanes). The plotted δ³⁴S values for alkylated BTs and DBTs are the numerical averages of all measured isomers.](image-url)
alteration. If correct, the implication is that compound-specific S isotope measurements are more sensitive indicators of early TSR inputs than are other existing geochemical proxies, including thiaadiamondoids concentration. However, we cannot yet discount the possibility that some other, unidentified process in certain oils leads to a pattern of 34S enrichment in B Ts that is similar to the pattern produced by TSR.

5. CONCLUSIONS

Large S-isotopic fractionations between benzothiophenes (B Ts) and dibenzothiophenes (DB Ts) of up to 25% have been observed in Smackover oils that were affected by addition of H$_2$S derived from TSR. B Ts are 34S enriched, close to the 34S values of sulfate from evaporites in the Smackover Fm. The 34S values of DB Ts span a wider range, are more negative than the B Ts, and change more gradually toward the sulfate isotopic composition. These fractionations between B Ts and DB Ts reflect differing degrees of TSR alteration of these oils.

Laboratory TSR experiments show that isotopic alteration of more than 30% readily occurs under TSR conditions. B Ts are sensitive tracers for TSR as they form readily under TSR conditions, and have 34S values that are similar to that of H$_2$S derived from CaSO$_4$. In contrast, DB Ts show relatively small 34S changes, preserving their original 34S values longer because of their greater thermal stability and slow rate of formation. DB Ts can therefore preserve the original (non TSR altered) 34S signals of the oils through low to moderate TSR alteration. The 34S of specific organosulfur compounds is controlled by the rates of addition of sulfate-derived H$_2$S and the destruction of the original OSC.

The isotopic compositions of individual B Ts and DB Ts allow us to detect TSR alteration of oils at the very earliest stages, and can also reveal the sulfur-isotopic composition of source bitumen even through more substantial TSR overprinting. The approach should find numerous uses in exploration, as well as for understanding the basic reaction overprinting. The approach should find numerous uses in exploration, as well as for understanding the basic reaction overprinting. The approach should find numerous uses in exploration, as well as for understanding the basic reaction overprinting. The approach should find numerous uses in exploration, as well as for understanding the basic reaction overprinting.

ACKNOWLEDGMENTS

We thank Zeev Aizenshtat and Ward Sa'd-Ahamed (Hebrew University, Jerusalem) for the EA-IRMS analysis of bulk S isotopes, and Adam Subhas (California Institute of Technology) for technical assistance with the MC-ICPMS. This study was partially supported by Marathon Oil Company and the Power, Energy and Environmental Research Institute (PEERI). We appreciate the discussions and comments by Tongwei Zhang, Zeev Aizenshtat, Geoffrey Ellis, Clifford Walters, Richard Worden, and an anonymous reviewer that help to improve this manuscript.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.gca.2012.01.023.

REFERENCES

