ITI. ATOMS AND RADIATION

1. Definitions; Einstein Coefficients

Consider a transition between states n’ and n”: the spontaneous transition probability
is Aprpr st for a downward transition n’ — n” at frequency v = (E, — E,»)/h.
(Conventionally, the upper state of a transition is denoted with a single prime, and the
lower state with a double prime.) The mean lifetime against spontaneous decay of the
upper state n’ is given by:

Tt = Y A 57 (3.1)

where the summation extends over all possible downward transitions from n’. Einstein
(1917, Phys. Zeits. 18, 121) defined two other factors that describe the interaction of the
radiation field and the transition. The radiation field is said to have an intensity I, dv [erg
cm™? s7! sr71] in the frequency interval dv about v. The absorption coefficient By

gives the rate at which upward transitions occur n”” — n’ in this radiation field at v:
N(n//)Bn//n/L, [S_l] (32)

where N(n”) is the number of atoms initially in state n”. The radiation field also
produces induced downward transitions n’ — n” (called “stimulated emission”) at the
same frequency at a rate:

N(n")Bpmr I, [s77] (3.3)

The Einstein coefficients A,/,v, Bpipe and By, are inherent properties of an atom
independent of the radiation field. Thus we can arbitrarily choose a specific radiation
field for the purpose of determining the relationships between these coefficients. It is most
useful to consider the case of thermodynamic equilibrium (TE), in which the intensity of
radiation is given by the Planck function:

2hv3 1
I, = B,(T) = Ty ] (3.4)

and the same temperature characterizes the relative populations of all energy states. Then
we can apply the principle of “detailed balance” (also called “microscopic reversibility”),
which states that in TE, the rate of upward transitions must exactly match the rate of the
corresponding downward transition. (Otherwise, the system is not is equilibrium!) In TE,
the relative state populations are given by the Boltzmann formula:

N(n")/N(@n") = gie[(En’E"”)/kT] : (3:5)

where g, is the statistical weight factor (degeneracy) of state n. Thus, detailed balance
requires:
N(TLH)Bnun/L, = N(n/)[An/n// + Bn’n”Iv] . (36)
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From these considerations, it is possible to derive explicit relations between B,,~ and
By, and between A, and B, that are independent of T (i.e., that are intrinsic
properties of the atom only). We find Einstein’s relations:

gn/ Bn”n’ = gn// Bn/n//

2hi3
Y C—;/Bn/nu . (3.7)

The absorption coefficient By, as defined above, must have units [erg~! ¢cm? Hz sr] in

order for I, B, to have units of an absorption rate in s~!. B, refers to the total rate
of an absorption n” — n’ of central frequency v,/ ; it can therefore also be related to the
integral over frequency of an absorption cross section, where

energy absorbed (unit frequency)
Taps = —I8Y (. d y_)l [cm?]. (3.8)
incident flux (unit frequency)

Then:

Z—;Bn//n/ = /0 O'absdl/ [CmQHZ] . (39)

The absorption oscillator strength f,,,» was defined originally as:

fO O-CLbS 14 (3.10)

> _CL
fO O abs dv

Frrrns

i.e., fnrn is the number of equivalent classical electron oscillators of the same frequency
as the transition that would be required to produce the same total absorption. It can be
shown that:

> me?
/ Oabs dv = fn”n’ (311)
0 mMeC
so that
EBn//n/ —= 7T62 fn//n/
47 MeC
812 /12
or An’n” = (_) fn”n’ (312)
MeC \C

A 2
—  0.66702 (—) Gt i | G
c
For a more complete derivation, see J. D. Jackson, Chapter 17.

2. Multipole expansion of the radiation field

In the semi-classical theory of radiation, the atom is treated quantum mechanically,
but the radiation field classically. The Hamiltonian therefore consists of several parts:

H = Hradiation + Hatom + Hinteraction (313)
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and its relativistically invariant form may be written as

Mt = o (5- 25)2 b V() +ed) .

2m,

A is the vector potential and ¢ the scalar potential associated with the electromagnetic
field (For those interested in a full treatment of the light-matter interaction, a thorough
treatment of E&M may be found in Classical Electrodynamics by J.D. Jackson. The book
entitled Quantum Theory by D. Bohm is a good place to look for detailed discussions
of points that are simply asserted here.). Expanding the squared terms yields a time-

dependent Schridinger equation of the form (using 5= (7/1)V)

1 — — — — — 2 —
HT > = B2V 4+ SV A+ EAV+ AR 4 V) et b T >
2m, c c c?
ho
- %y
28t| >

The time dependence of the radiation field arises in the vector potential, which can
be written (in complex and real representations)

A(F,w) = A(w)e’E'F = Agcos(wt —k-7) |
which leads to electric and magnetic fields given by (real terms)

104 q .
E(rt)y = —Eaa—t = kAgsin(wt — k- 7)

B(Fft) = VxA = kx Apsin(wt—k-7)

(remember that B is in phase with the electric field, but is oriented perpendicularly to £
in a spatial sense).

It turns out that we are free to pick a reference frame, or gauge, in which the problem
is as simple as possible. For light-matter interactions, this is called the Coulomb gauge, in
which the scalar potential is zero and in which the divergence of the vector potential is also
zero, that is, ¢ = 0 and V-A=0. In this gauge, the relativistically invariant Schrodinger
equation reduces to

h2 — h e — 2 —
HO > = {[ . VM-V(F)}-}—[;Q A9+ 602|A|2”|\1:> (3.14)

e meC 2m

In most instances the |ff|2 term can be neglected, unless very high electromagnetic field
intensities are involved (such as can be the case with lasers, particularly ultrafast laser
pulses of picosecond or femtosecond duration), and we are left with

eh - -
Hinteraction — 2mecA : Zvj . (315)
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The probability for a transition per unit time is given by:

4m?e? A 2 k- = 2
Wosp = @| (wra) || < ble -ZVJ'\CL > | (3.16)
with L
Dpa = <ble®*™. > "Vjla> . (3.17)

The “multipole expansion” consists of expanding e**'™ in a power series:

ezE-F = 1 + ZEF _ (EF)Q — Z(EF)3/6 + ... (318)

The matrix elements Dy, are best evaluated one at a time. Assume also for a moment
that j = 1. If the radiation field is assumed to be z polarized, then, for example, the
r-component becomes:

(Dpa)e = <b|eik2%|a> ) (3.19)

The electric dipole approximation consists of retaining only the first term in (3.18),
e ~ 1. (3.19) then becomes:

)
(Doa)e = <blgfa> . (3.20)

This matrix element can be rewritten in terms of the dipole moment operator by using the
relation:

< b|%|a > = —%(Eb — E,) <blz|la> . (3.21)
Generalizing this result to the other components, and using wy, = (Ep — E,)/h, we
find:
w? 2 2 w? 2 7
Wase = ﬁ|A(wba)| | <blzla>|* = m|A(wba)| |<d>]| , (3.22)

since the electric dipole operator is defined as:

d = e> 7 . (3.23)

In cases where the matrix elements of the electric dipole operator vanish, successively
higher terms of the expansion (3.18) need to be retained. For example, if the term ikz is
included, we find:

(Dpa)o <b|z%|a> . (3.24)

To evaluate this term, we divide it in two parts, and add and subtract terms involving
2 Th
7. Thus,

0 o 0 o
(Dba)e o |<blzge + z5-la> + <blzgm — zo-la>]/2 . (3.25)
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Using relation (3.21), the first term can be shown to be the xz-component of the quadrupole
moment tensor of the molecule:

< b|z—x + x—z|a > = e < blxzla > . (3.26)

The second term in (3.25) has the form of an angular momentum operator, so that:

0 0
g _ 2 2
<b|z8x maz\a> x 1< blpyla >, (3.27)

where 1, is the y-component of the magnetic dipole moment. Thus, the second-order terms
give rise to (part of the) electric quadrupole and (all of the) magnetic dipole radiation.
Since they arise from the same expansion term, they are fundamentally of the same order
of magnitude. .

In summary, in the multipole expansion of €7, the first term, the electric dipole
term, gives matrix elements of the form:

Ey: <b) Fjla> . (3.28)
J

The next term gives both magnetic dipole transition matrix elements

My: <b) jijla> (3.29)
J

Ey: <b]Y Qjla> (3.30)
J

where the “electric quadrupole” moment operator is:

—

Q = 77 — r%6;/3. (3.31)

Even higher order transitions are sometimes observed: for example, electric
hexadecapole transitions in solid hydrogen have been seen in the laboratory and one day
might be discovered in some astrophysical region.

3. Selection rules

Consider transitions from state a to state b

la> = |agJaMy> 5 |b> = |apJy My>
where « stands for n, L, My, .... For the different terms in the multipole expansion,
transition matrix elements vanish identically unless certain “selection rules” are satisfied.

Electric dipole (E): The following rules are rigorous in all cases:
AJ =0, £1, but J, = 0 — J,=0 forbidden
AM =0, +1 (for Stark and Zeeman splittings)
parity must change (A [, = +1)
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The following additional rules hold in pure LS coupling
with no configuration interaction:

AMp =0, £1 (for sublevels)

single electron transitions only (Al=+1)

AL =0, +1, but L, =0 — L; = 0 forbidden
AS =0

These rules are relaxed for deviations from pure LS coupling,
or when states contain admixtures of more than one configuration.

Magnetic Dipole (M ):
AJ =0, £1, but J, = 0 — J,=0 forbidden
AM =0, +1 (only important for external fields)
no parity change

The above rules are rigorous. In strict LS coupling
there are no M; transitions such that:

An =0
Al=0
AS =0
AL =0

That is, only if the spin-orbit interaction is included can M;
transitions occur between levels of the same term.

Electric Quadrupole (Es):

AJ =0, +1, +2
(with J, + Jp > 2)
AM =0,+£1,+2 (for Stark and Zeeman experiments)

no parity change.
Again, these rules are rigorous. In strict LS coupling they become:

AS =0
AL =0,4+1,42
(with L, + Lp > 2)
Al =0,£2, but I, — I, = 0 forbidden.

Angular distributions:

The transitions with AM =0, £1, £2 for E;, M; or Es occur
with equal probability and the net result is independent of angle.
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4. Transition probabilities

Consider a transition from a to b, where a is the upper state and b the lower state.
Let |a> = |agJoMy> , etc.
(a) Electric dipole transitions

The spontaneous transition probability is

2 a 1 llab 3 b (04 aa a a :;.:;2
a b

and Sy is called the “line strength” which is defined as:

Sab = ZZ| < OébeMb|O_Z|anaMa > |2 (333)
M, My

When S is in atomic units (i.e. €2a§=6.4606 x 10735 [esu cm]?):

Sab

Ay = 2.0261 x 10798 —222
b 06><0V(2Ja+1)

[s71] (3.34)

where v is the frequency of the transition in Hz, v=|E, — Ey|/h=cP, and U is the
wavenumber in cm~!. As we have seen before, the absorption oscillator strength fi,

and Ap, are related by:

8m2e?v?
(2Ja + 1)Aab — W(2Jb + 1)fab
= 0.667020%(2J, + 1)fpa (3.35)

where fp, is dimensionless. Note the notation fy,,, where the lower state is listed first.
This is the convention for atoms; as we will see, for molecules, the order is reversed.
Another useful property is the radiative lifetime of state a:

Ta = Y Ay 8] (3.36)

where the summation extends over all possible transitions to lower states b. The
significance of a lifetime of an excited state is obvious, but there is an additional related
physical property that arises from applications of the uncertainty principle:

AE,7, ~ h (3.37)

which implies that the energy of a state a is determined only within an interval
AE, ~ h/71, about E,, the nominal eigenvalue. Alternatively, this means that any
transition will have a minimum spread in frequency Av ~ 1/7, [Hz] about the nominal
line center frequency.
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Orders of magnitude:

For a strong transition, Su, = 1 au. In the visible region, v ~ 20,000cm ~*

A~1.6x10"s7!
T~62x107%s (62 ns)
Av/v ~2.7x 1078
f~0.06if J, = J,

(b) Magnetic dipole transitions

In LS coupling, M; transitions can take place only between two levels of the same
term. The formula is similar to that for E; transitions:

647T4V3 Sm(ana, ab,Jb)

A ada) : -t .
(ataJay apdy) T Ay s (3.38)
where
Sm(@ada; wdy) = Sm(awds, aada) = Y > | < aadsMyliloaaMa >|* (3.39)
M, M,
eh - =
io= — L S 3.40
I 2mec( + geS5) (3.40)

In LS coupling, the line strength for a L, = Ly, Sq = Sp, ng = np and J + 1 <> J line is:

(J=S+L+1D)(J+S—L+1)(J+S+L+2)(S+L—J)

Sm(SLJ, SLJ+1) = TEES)

(3.41)
in units of (eh/2mcc)?.
Recall that the hyperfine transition at A 21 cm in the ground state of H is a magnetic
dipole transition in which AJ = 0. The spontaneous transition probability for a transition
F — F — 1 can be written:

_ 6473 . gz,ug(ge/2)2.
shed | (2F 1 1)
)

(F+J-DF+T1-J)I+J+F+1)([I+F—J+1)
AF

where g is the Landé g factor (not to be confused with the g, or gy factors!), or

A(F,F — 1)

[s71] (3.42)

S(S+1) — LIL+1) + J(J+1)

=1 3.43
9=+ 27(J +1) (3:43)
(c) Electric quadrupole transitions
321005 Sg(aada, apd
Ap(0adas andy) A CICTE BRI (3.44)

Bhcd (2J, + 1)
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where

So = D> ) | <andyMy|Qlag oM, > | (3.45)

M, M,

and (@ is the quadrupole moment operator.

References see C. Mendoza 1983 in “Planetary Nebulae”, TAU Symposium No. 103
(Reidel, Dordrecht), p.143 for an excellent current review of transition probabilities for
most forbidden (M; and Es) transitions of astrophysical interest, as well as for some
important F transitions.

(d) Sum rules

There are some general sum rules for oscillator strengths, the most well-known of
which is:
Z fmn = N = number of electrons in the atom (3.46)
n

and the sum extends over a complete set of eigenstates; therefore it implicitly includes
integration over the continuum. Another sum rule is:

Y (fmn/Epy) = am (3.47)

n

where a,, is the polarizability of the system in level m in a.u. and E,,, is in a.u.

(e) Determination of transition probabilities

The determination of oscillator strengths and transition probabilities is a vast and
complicated subject. It is essential to have accurate values in order to determine
abundances and use lines as diagnostics of physical conditions in astronomical objects.

(i) Theoretical methods

The accuracy and applicability of a particular theoretical method depends upon
the atomic system under study. The problem is essentially one of producing accurate
wavefunctions by numerical means so that transition matrix elements can be computed.
Moreover, the wavefunctions of the two states must be comparably accurate. For example,
in systems like Li, Na, K, Mg", Ca™, which have single electrons outside a closed shell,
it is possible to compute quite good wavefunctions using a semi-empirical potential that
is based upon a central, screened Coulomb potential plus the effects of the polarization
of the core electrons by the valence electron. As long as the matrix elements are not too
small, f-values accurate to better than 10% can be calculated this way. Small matrix
elements mean large cancellation effects between the wavefunctions and sensitivity to fine
effects: more complicated methods are then required to give accurate results. In systems
with more than one electron in an open shell, the most elaborate theoretical methods
are usually necessary. As a general rule, configuration interaction computations provide
the most reliable results, and in the hands of the most careful users provide accuracy
comparable to that of a good experimental determination. One criterion for estimating
the worth of a theoretical result is how well the wave functions reproduce the measured
energy levels.
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(ii) Experimental methods
There are basically two methods, with many variations:

Lifetime measurements. Lifetimes of excited states can be measured quite accurately.
Because 7, = (3_; A;j)7 ! is related to a sum of transition probabilities, it does not
necessarily directly give the A;; value for any particular transition. Since the measurement
is basically one of intensity as a function of time, the intensity of light emerging in some
transition can depend not only on the lifetime of the upper state, but also the rate at
which it is being populated by cascades from higher states.

Absorption measurements. The amount of light absorbed in a particular line by a
known number of absorbing atoms is directly related to the oscillator strength. The usual
difficulty lies in determining the number of absorbers accurately.

5. Example

C 1II 1s22s22p 2P° — 15%2s2p? 2D multiplet
Here, the electron configurations are 1s2s?2p (the lower state) and 1s?2s2p? (the upper
state), while the spectroscopic terms are the doublet P and doublet D. The superscript ©
in the lower state means the parity is odd, where the parity is defined as Xl;, where the
summation runs over all electrons.
For example: 2P term 1s? 2x0=0 [=0
252 2x0=0 =0
2p 1Ixl=1 I=1
>-;li=1 (an odd number, so the parity is odd)

°De term 1s®  2x0=0 =0
252 1x0=0 [=0
2p 2x1=2 =0

>; li=2 (an even number, so the parity is even)

The 2P term has S = 1/2 (25 + 1 = 2) and L = 1, thus the resultant total angular
momentum J can have values 141/2, that is, J=1/2, 3/2. The 2D(®) term has S = 1/2
(25 +1=2) and L = 2, thus J=3/2 and 5/2 occur.

The possible radiative transitions between levels of these two multiplets are the
following “lines”:

2P?]_2DJ )\vac f Zl Aul (S_l)
J=1/2 — 3/2 1334.5323A 0.129 2.90 x 108
J=3/2 — 5/2 1335.7077A 0.116 2.88 x 108
J=3/2 — 3/2 1335.6627A 0.0128 2.90 x 10°

From here, we can work backwards to the energy levels, taking the ground level 2P‘1’ /2
as 0.00. The first and 3rd lines have a common upper state, so the wavelength difference
gives the fine-structure, J = 1/2 — 3/2, splitting of the ground term, 1/\;—1/\3=63.417
cm ™! Given this, the fine-structure, J = 3/2—5/2, splitting of the upper term follows from
the wavelength difference of lines 2 and 3: 2.522 cm~!. Thus, the so-called term energies

work out to be:
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Term J E(cm™1)

2peo 1/2 0.000
3/2 63.417
2D 3/2 74,932.619
5/2 74,930.096

Notice that the level of higher multiplicity in ?D actually lies lower in energy in this case.

The mean term energies < Y ;(2J + 1)E; are *P° : 42.278 cm™!
’D : 74,931.105 cm™!
and the mean multiplet wavelength is A\;=1335.313 A.
Individual A-values can be computed from the listed f:

linel: 2J,+1)=4 (2J,+1) =2 = Ay = 2.416 x 108 s7!
line 2 Ay = 2.891 x 108 71
line 3 Agp = 4.79 x 107 s71

Note that the total Y, Aqp for the D3y state is:

Ao = (2,416 + 0.479) x 10® = 2.895 x 108 s~ 1
while that for 3D5/2 is just:

Atot = 2.891 X 108 Sil.

Note also that Y, fap = 0.129 for 2P‘1’/2

and = (0.129 for 2P§/2.
6. Intercombination transitions

In pure LS coupling, radiative transitions between states with different total spin S are
forbidden. However, because of the spin-orbit interaction, these so-called intercombination
transitions can occur weakly. Since the spin-orbit coupling increases rapidly with
increasing Z, the intensities of the intercombination lines behave similarly. For example,
intercombination transitions are practically absent in the He spectrum, but in the Hg
spectrum the line at 2537 A (65— 6s6p 3P;) is very intense.

The matrix elements of the various multipole moments for intercombination
transitions can be expressed within pure LS coupling by taking the appropriate linear
combinations due to spin-orbit interaction. The rigorous selection rules given earlier apply.
Intercombination lines are sometimes called “semi-forbidden” lines, and are indicated by
a bracket on the right-hand side, for example, the C III] 25 1S — 2s2p 3P lines at A\1906,
1908 A. Such lines can be very prominent in the spectra of planetary nebulae or other high
temperature nebulae, some of the more important transitions are summarized in Tables
3.1 and 3.2.

7. Two-photon emission

Levels such as the 2 2S; /2 level of H and the 2 13, level of He are called “metastable”
because in the usual approximations, they cannot decay by electric dipole, electric
quadrupole, or magnetic dipole radiation according to the J, = 0 — J, = 0 rule. However,

the levels can decay by simultaneous emission of two photons:
H(2s) — H(1s)+hvy+hvs. (3.48)
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Table 3.1 Intercombination Transition Probabilities for He-like Ions

Transition W(l'S, — 2'P,), W(2'S, — 2'P,), w(2's, — 2'P,),
Ion [s=) [s='] {s~)
He il 1.80 x 108 0027 1.58

Lin 1.81 x 10* 0.057 4.18 x 10!
Be I1I 4.0 x 10? 0.052 383 x 108
Blv 4.23 x 10# 0.016 2.05 x 1¢¢
cv 2.84 x 107 6 x 1077 7.87 x 100
N VI 1.40 x 10* 0.018 2.43 x 10
o vl 5.53 x 10¢ 0.25 6.41 x 10*
F vill 1.85 x< 10* 1.36 1.50 x 108
Ne IX §.43 x 10° 4,96 320 x 1O?

Table 3.2- 2'S; — 2°P; Transition Probability in Be-like Ions, W([s ]

Be B I ' ci N1V ov F Vil
0.7 2.0 x 10t 1.9 x 10* 9.2 x 10 36 x 108 1.1 x 10*
Ne V11 Na VIII Mg IX Al X Si Xt P XII
29 x 100 7.3 x 10 1.6 x 108 Jax 10 6.5 x 108 1.1 x 10#
S XIIH Ci X1v Ar XV K XV1 Ca XVII

2.1 x 10* 32 x 108 52 x 108 8.2 x 108 1.3 x 107

The probability for simultaneous emission of two photons with one in the range 4 to
v1+dv in, for example, the case of He is:

2107T6€4

A(Vl)dyl W

(

ViV X

3 [< 11S|d- & |n' >< n'|d-&[2'S >

Upro + Vo
>av

where the summation extends over all triply degenerate n’ 1Py —2 1Sy, v, = @ — v,
and the average is over the polarization directions €}, €5. Physically, the two-photon process
occurs by weak coupling to all of the (higher) intermediate P states. See, for example,
Jacobs 1971, Phys. Rev. A 4, 939 Drake et al 1960, Phys. Rev. 180, 25 for more details.

The total two-photon emission probability Asotq; is 8.23 s~! for the H 2 2S; /2 level and
51.3 s~ for the He 2 'Sy level. The photons emerge with a broad probability distribution
subject to the constraint that the sum of the photon energies hiy + hvy = FEog — Fis.
The spectra for H and He are illustrated in Figures 3.1 and 3.2, respectively.

The continuous emission from H(2 2S; /2) is observed in the spectra of low-density
ionized nebulae in which the 2 2S; 2 level is populated by recombination and cascade
from higher levels, and has a good chance of radiating two photons before undergoing
a collision or another photo-ionization. The resulting spectra of both H and He can be

n/

<11S|d- &|n/ >< n/|d- &|2'S >
Vnp2 + 11
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Figure 3.1- The relative emissivity (in ergs/s/Hz) due to the two-photon 2s-1s decay in
hydrogen.
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Figure 3.2 Two-photon decay spectrum of the 2'S state of helium (w/wavelength X in
nm).

— 51 —



important sources of photons inside nebulae. For more details, see for example, Spitzer
and Greenstein (1951, Ap. J. 114, 407 and Gaskell (1980, Observatory 100, 148).

The He (2 3S;) state is also highly metastable. However, its dominant form of radiation
decay is by direct magnetic dipole transitions to the ground state, with A(2 3S — 1 1S)
= 1.27 x 107* s7! (Drake 1971, Phys. Rev. A3, 908). The transitions can occur weakly
if exact spin functions are used. This means that in relatively low-density plasmas where
He (2 3S) can be populated by recombination, this state can be significantly populated
and can behave like a quasi-ground state of triplet He atoms (see, for example, Drake and
Robbins 1972, Ap. J. 171, 55).

3PO

Trans
Auroral Aurord

8. One more example

Consider the oxygen atom with ground state configuration 1s?2s?2p*. As we have
seen, this configuration gives rise to the terms *Py 1 9,'Da, and 'Sg. The splitting between
the lowest two terms is 15,790 cm ~! (1.96 eV) and between the highest two terms is 17,925
cm™! (2.22 eV), so that the transitions occur at visible wavelengths, A 6331 and 5577 A,
respectively. The excited terms correspond to configurations 2p°ns, 2p3np, 2s2p°, etc....
The excitation energy of the lowest excited (triplet) term is 76,717 cm™! or 9.51eV, so
that the resonance transition lies at vacuum ultraviolet wavelengths, 1302 A.

For historical reasons, transitions between the middle and lowest terms are called
“nebular-type” transitions (for oxygen: 'D—3P) and those between the highest and middle
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terms are called “auroral-type” transitions. The strong green line in the Earth’s aurora, A
5577 [0 1], is from 'Sg to !D,. Forbidden lines are indicated by square brackets. Transitions
from the top to the lowest term are called “trans-auroral” transitions. Transitions between
individual levels of a ground configuration, such as 3Py—3P;, are called “fine-structure”
transitions. These lie typically at far-infrared or submillimeter wavelengths and are
observed in dense, cold interstellar clouds. For example, for oxygen *P; —3P, occurs
at 63 pm and 3Py —3P; at 145 pum.

Both the nebular, auroral and transauroral transitions are electric dipole forbidden.
However, the 'Dy—3P; 5 and the 'Sy—3P; transitions can occur as magnetic dipole
transitions. Both the 'Sq—!Dy and 1Sy —3P, transitions clearly require electric quadrupole
radiation, since AJ = 2. The transition probabilities for these transitions are quite low,
typically A =0.01 s™!, so that the lifetime of the state can be as large as 100 sec. More
specifically, for oxygen:

Dy =3Py : A =723 x 10" s !
1Dy, —3P;: A =211 x 1031
1D2 — 3P2 A =634 x 103 s !

1§y =3P : A =732 x10"2s!
1Sy — 3Py : A =2.88 x 1074 571

1§) — 1Dy : A=1.225"1

3P() — 3P1 : A=1.74 x 107° s 1
3P1 — 3P2 : A =892 x 107° s !
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IV. PHOTOIONIZATION AND RECOMBINATION

A. Photoionization

1. Hydrogen

Consider a transition in an atom from a bound state nl to a continuum state kl in
which one electron is free. This is usually called a “bound-free” transition. This can result
upon absorption of a photon of energy hrv > I,, the ionization potential of the atom in
state n. The probability of this absorption as a function of photon frequency v is described
in terms of a cross section:

873 1 -
o) = TV Ly |/xp;;l, JUdr 2 em? (4.1)
3¢ gn U=i+1

where g,, is the degeneracy of level n and the integration extends over all coordinates and
includes a sum over all possible continua. The ¥y; are continuum eigenfunctions belonging
to eigenvalues E = (I, + hv), and the energy normalization is given by:

< B|P >= / a(B)a*(E)Uy Ui, (E)dE = 1 (4.2)

such that |a(E)|?dE gives the probability of finding the system (ion plus free electron) in
the interval (E, E + dE).
For H atoms, the cross section can be computed exactly (see e.g. Sobelman Ch. 9.5):
4 ,—[(4arctanc)/¢]
ﬂ) ¢ [em?] (4.3)

B —16
on = 34439 x 10710 ()

v

where € = (v — v1)Y/? and v; = 109,678.77 cm~!. At the ionization threshold, oy (v1) =
6.308 x 108 cm?. Note that for a pure Coulomb potential (i.e. a strictly hydrogenic
system), the photoionization cross section is finite at threshold. Table 4.1 lists the cross
sections at various wavelengths.

Table 4.1- Photoionization cross sections in cm? for the ground state of H

MA) or (M)
912 6.3(-18) (meaning 6.3 x 10~!8)
760 3.9(-18)
651 2.9(-18)
570 1.8(-18)
456 9.3(-19)
304 2.9(-19)
182 6.3(-20)
91.2 7.4(-21)
45.6 8.2(-22)
22.8 8.6(-23)
9.12 4.1(-24)



For a hydrogenic system of charge Z initially in state of principal quantum number
n, the cross section is often written in terms of a Gaunt factor g;,, for ionization, which is
of order unity:
32m°e®  RZ4
0'(1/) = Gin 33/2h3y3 . no

(4.4)

where R is the appropriate Rydberg constant R=R«, /(1 + m./M). The Gaunt factor is
the correction factor for the quantum result with respect to the classical treatment. For
H

Y

o(v) = 2.814x 100 %n %,  [cm?] (4.5)

and specifically for H in its ground level, to an excellent approximation

o(v) ~ 6.3 x 10718 (%)3 [em?] . (4.6)

The classic paper on radiative properties of hydrogenic systems is by Karzas and Latter
1961, Ap. J. Suppl., 6, 167.
Often, photoionization cross sections are represented in the form

o(E) = o(l) {a (é)s + (1-a) <é)s+1} , (4.7)

where o () is the threshold cross section at the ionization potential I. For H, a fit to within
10% for E < 2 keV is obtained with a=1.8 and S = 3.2. For higher photon energies, an
accurate representation is provided by the limiting form:

ou(E) ~ 4.1x1077(I/E)/? cm?. (4.8)

In some astrophysical plasmas, the metastable 2 2S; /2 state of H may be sufficiently
populated that absorption from it is a significant source of opacity. The calculated cross
sections for this state are listed in Table 4.2

Table 4.2— Photoionization cross sections (in ¢cm?) for the metastable 2 2S; /5 state of H

AA) 3647 2763 1600 1024 418 170 86.9
o(cm?) 3.7(-18) 2.0(-18) 5.9(-19) 5.0(-20) 9.4(-21) 1.4(-21) 1.9(-22)

2. Helium

a) direct photoionization

The cosmic abundance of helium with respect to hydrogen is about 0.1. Helium can be
photoionized by absorption of photons with energies greater than 24.58 eV or wavelengths
shorter than 504 A. Thus, the production of He' requires a more energetic, hotter light
source than does the production of HT.

Exact calculations are no longer possible for He, but highly accurate calculations
can be performed which agree well with experiments. Table 4.3 lists values of the
photoionization cross sectoin from the ground state of helium, og.(FE), for several
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wavelengths.  They can be represented approximately by equation (4.7) with the
parameters o (I) = 7.6 x 1071® cm?, o = 2.7 and S = 2.83.

Table 4.3— Photoionization cross-sections [cm?] for the He ground state

AA) 504 413 310 207 155
o(cm?) 7.4(-18) 5.4(-18) 3.2(-18) 1.4(-18) 8.1(-19)

As Table 4.4 shows, the ratio of the photoionization cross sections of helium to
hydrogen increases rapidly toward shorter wavelengths:

Table 4.4— Ratio of He to H photoionization cross sections

A(A) 504 413 310 207 155
o(He)/oc(H) 6.3 81 11.0 159 20.4

The high energy limit for helium
one(E) = 25 %107 Iy/E)?  [em?] (4.9)

is about 60 times larger than for hydrogen. Hence, in a cosmic abundance gas, helium is
a more efficient absorber of short wavelength photons than is atomic hydrogen.

Photoionization of the 2 3S; state of helium has a threshold at 2598 A. It may
contribute to the opacity in dense nebulae, and is an additional source of free electrons.

b) autoionization

The excitation energy of the He 2 38 state is 19.8 eV. Thus, this state, in which only
one electron is excited out of the 1s orbital, already lies more than halfway toward the
ionization threshold of 24.6 eV. This suggests immediately that “doubly-excited” states,
belonging to configurations (nl,n’l') 1L, 3L with n > 2,n’ > 2 are likely to have energies
larger than that needed to remove one electron completely. Such configurations make
perfectly good, well-defined stationary states; however, because they are embedded within
the continuum of He™ plus free electron states, these doubly-excited states have high
probabilities of undergoing transitions. They can either radiate to low-lying He states
below the ionization threshold, or they can decay “non-radiatively” into the continuum
states:

He(n,l,n'l') — He™ + e(e) (4.10)
in a process called “auto-ionization”. Experimentally, these states show up as “resonances”
in the photon absorption cross-section of He in the EUV. The interaction between a discrete

state and a continuum results in a cross section profile that looks like:
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He | 1s? 1s-2s2p PP°

|
206.21 A (Angstrom)

This is called a Fano-profile, and can be written as:

(q + 67‘68)2
1+ €2

res

o(E) = oy(E) (4.11)

where o, (F) is the smooth background cross section, €..s = 2(E — E,) /Ty, I'y = h/7q is
the autoionizing width, and ¢ is the so-called “shape” parameter (see Fano 1961, Phys.
Rev. 124, 1866.) Fig. 4.1 illustrates the resonance structure of the photoionization cross
section of He, whereas Fig. 4.2 shows the location of some of the He doubly-excited states.

Photoionization of ground state helium is not much enhanced by absorption into the
resonances because they involve weak two-electron transitions from the (1s)? S state, but
photoionization of the metastable atoms can be increased considerably for photons with
energies near the resonance energies.

The classic paper on the He autoionizing resonances is that of Madden and Codling
(1965, Ap. J. 141, 364). In more complex multi-electron systems, states of multiply-
excited configurations need not lie above the first ionization limits.

Autoionizing resonances do sometimes appear in astronomy: a good example is an
absorption feature in the solar spectrum near A 1932.0, 1936.4 A that is due to a transition
from the ground state to an autoionizing resonance in Al T (3s?3p 2P - 3s3p? 2S;/5). (See
Kohl and Parkinson 1973, Ap. J. 184, 641).

3. Other elements

Although elements heavier than H and He have small abundances relative to H, lines
of their ions show up prominently in the spectra of nebulae. As for He, no exact results can
be obtained for their photoionization cross sections, but accurate calculations are possible
for most low Z atoms.

For atoms with an open shell configuration, removal of an electron may lead to more
than one final state. For example, removal of an outer valence 2p electron from the ground
state of O 3P (1s22s22p?) can produce an oxygen ion with the configuration 1s22s?2p? in
any one of the ground #S and metastable 2D and 2P states.
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Figure 4.1: He photoabsorption cross section as a function of photon energy. The
structures arise from absorption into a 'P° series of resonances.
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Figure 4.2: He doubly-excited states.
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o 3

The ionization thresholds are 13.6 eV, 16.6 eV and 18.6 eV, respectively. Table 4.5
lists approximate values for the different “channels.” The smooth behavior of the cross
section in Table 4.5 is interrupted between the O*(%S) and Ot (2D) thresholds by a series
of resonances with configurations (2p®ns) 3D, (2p®nd) D and (2p®nd) 3S, converging to
O™ 2D. More series of resonances occur below the O (?P) threshold. Thus, the cross
section will have the general appearance:

4s
2D

Photon Energy

with small resonances superimposed in addition.

Table 4.5 Photoionization cross sections of oxygen in 107'® cm?

AA) Ot (*S) O*(2D) Ot (?P)
910 4.18

800 4.76 -

730 3.88 4.77 -

670 3.80 5.33 2.76
600 3.63 5.51 3.07
500 3.33 5.31 3.17
400 2.90 4.60 2.85
300 2.42 3.58 2.28
200 1.76 2.25 1.47
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3+

Ne
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Ne2+

Table 4.6— Parameters i
o(E) = o

final
state
ct(®p)

c?* (s)

Nt (3p)
N2+(2P)

N3+(1S)

ot (%s)
o* (*p)
ot (%p)
02+ (3p)

O3+(2P)

oi*(ls)
Ne+(2P)
Ne2+(3P)
e2+(lD)
Ne2+(ls)

Ne3+(4s)

Ne3+(2P)

Ne3+(2D)

ne** (3p)

Ne5+(2P)

nebt (ls)

N
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)

Hof/ard.(in[versﬁﬁj

— 60 —

he Cross Section Formula
+ (1—-a)

(é)s+1}

o o(1) (1071
3.317 12.2
2.789 10.3

 4.287 11.4
2.860 6.65
1.626 2.06
2.661 2.94
4.378 3.85
4.311 2.26
3.837 7.32
2.014 3.65
0.831 1.27
3.769 5.35
2.717 4.16
2.148 2.71
2.126 0.52
2.346 1.80
2.225 2.50
2.074 1.48
1.963 3.11
1.47 1.40
1.145 0.49
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There is a large body of data on photoionization cross sections, both experimental and
theoretical. Mendoza’s (1983) review, referred to earlier, also contains references to many
photoionization processes of astrophysical interest. For a uniform, but not as accurate set
of cross sections for a large number of ions at energies that extend into the X-ray region,
see Reilman and Manson (1980, Ap. J. Suppl. 40, 815: 1981 Ap. J. Suppl. 46, 115; 1986
Ap. J. Suppl. 62, 939).

Table 4.6 reproduces the parameters in the fit to Equation (4.7) for ions of C, N, O
and Ne. New results with improved accuracy appear regularly.

Note: recall the oscillator strength sum rule formula

e / odv (4.12)

MeC

for bound-bound transitions; this suggests that it is possible to describe the probability of
continuous absorption in terms of a differential oscillator strength:

df df mecC
_ — 4.1
de hdv me2h g (4.13)

4. Inner shell ionizations

So far, we have considered only the removal of a valence electron. If the photon energy
is sufficiently high, an electron in an inner shell can be removed directly. This normally
requires X-ray or 7-ray photons (such as from a supernova remnant). The inner shells are
designated as:

n l 7 shell
1 0 1/2 K

2 0 1/2 L,

2 1 1/2 L;r
2 1 3/2 Lyrr
3 0 1/2 M;
3 1 1/2 My
3 1 3/2 Myt
3 2 3/2 Mrv
3 2 5/2 My

What happens following the creation of a “vacancy” in an inner shell of an atom
or ion? Clearly, the system is in a state of very high excitation. Several outcomes are
possible depending upon the initial number of electrons in the system, the shell with the
initial vacancy, and so on (Figure 4.3 graphically illustrates these various processes):

1) An electron from the valence shell or a higher inner shell can fill the vacancy by an
allowed radiative transition. Usually a very energetic photon is involved and this is a way
of producing X-ray line spectra (Radiative decay). The probability that a vacancy is filled
by a radiative transition is called the “fluorescence yield”, and is conventionally denoted
by wgk for the K-shell.
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Figure 4.3— Schematic diagram illustrating the various possible processes following inner
shell ionization.

2) An intermediate-shell electron can fill the inner shell vacancy with the simultaneous
ejection of an outer electron to carry off the transition energy and to conserve angular
momentum (Radiationless Auger effect). Note that this is a gratuitous ionization: two
electrons have been liberated for the price of one. In complex atoms, more than one Auger
electron can be produced in the cascade of transitions to fill inner shell vacancies in so-
called “shake-off” processes. These multiple ionization events complicate the equation of
ionization equilibrium by coupling together ions of widely different charge states.

3) Another variant is possible in which the outer shell electron fills the inner shell vacancy
and the excess energy is carried off partly by another liberated valence electron, and partly
by emission of a photon (Radiative Auger effect).

Table 4.7— Number of Auger electrons emitted.

initial subshell Number of initial electrons in atom/ion
vacancy 4-10 11 12 13 14 15-18

2p 0 0 1 1 1 1

2s 0 1 1 2 2 2

1s 1 1-2 23 23 3 34

The selection rules for an Auger transition are AL = A S = AJ = 0, and no parity
change, and so overall behavior of the photoionization cross section of an atom has the
general appearnce outlined below.

Consider again the case of oxygen as an example. Resonances appear in the absorption
cross section at high photon energies, in which the inner shell 2s electron is excited to
autoionizing states of 3S, 3P and 3D symmetries with configurations (2s2p*np), converging
to the 4P and ?P O (1s?2s2p?*) states at 435 and 310 A, respectively. The cross sections
for this L; ionization process are typically 1078 cm? around threshold. However, as Table
4.7 shows, removal of a 2s electron does not yet lead to Auger electrons for oxygen. Thus,
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the OT states will decay by fluorescence. The “P (2s2p?) state of OT decays principally
to the *S° (2s%2p?) state emitting a photon at 843 A, and the 2P (2s2p?) state decays to
the 2D° (2s22p?) and 2P°(2s%2p?) states through photons at 504 and 534 A respectively.

The 1s electron of oxygen can be removed at E>545e¢V or A <22.75 A, leading to *P
and 2P states of OF:

03P (1s?2s%2p*) + hv — O (1s2s?2p?) 2P + e (4.14)
The cross sections for this K-shell ionization are given in Table 4.8.

Table 4.8- K-shell photoionization cross sections for O in 10~ 8cm?.

AMA) 207 103 5.2 2.5
o(em?) 0.44 0.075  0.011  0.001

Radiative decay of the excited state created by the K-shell vacancy leads to a pair of
emission lines labelled K4, and K,,, corresponding respectively to the 2py,s - 1s1/2 and
2p3/o - 1819 transitions. However, for light elements such as oxygen, the radiationless
Auger process is much more probable:

O T (1s2s?2p?) — O?* (1s%2s?2p?) + ¢ (4.15)
In this case, it is called a K-LL transition, because a K-shell vacancy is created, the vacancy
is filled by an L-shell electron and a second L-shell electron is ejected.

For neutral, light atoms with Z < 10, the K-shell fluorescence yields are measured to
be small, wx <0.02, and calculations suggest that it is less than a factor of three higher
for positive ions. Radiative Auger yields are computed to be w,fA <0.0lwg. Thus, the
probability of a radiationless Auger transition to fill an inner shell vacancy is nearly unity.
For heavy elements, iron has wx=0.35, while for nickel wx=0.38.

The K-shell ionization cross sections of an element change little as the outer electrons
are removed, except for a shift in the K-shell edge. Figure 4.4 illustrates how the 1s
threshold moves to higer energies as electrons are progressively removed from iron.

K-shell absorptions are observed astronomically. Figure 4.5 reproduces the X-ray
spectrum of the Crab Nebula, a supernova remnant. The X-ray spectrum has an intrinsic
shape I(E) = AE~29 [ph cm™2 s~! keV~!] with, superimposed on it, K-shell absorption
by the various atoms in the gas. The depression near 0.5 keV can be plausibly attributed
to the oxygen K-shell absorption.
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Figure 4.4— K-shell photoeffect cross sections for various Fe ions.
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Figure 4.5— The X-ray spectrum of the Crab Nebula. The solid curve is a model fit, with
the K-edges of N, O, Ne, Mg, and Si indicated along with the L.-edge of Fe.
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B. Recombination
1. Hydrogen

The process of photoionization has an inverse process called “radiative recombination”

H* + e(e) — H(nl) + hv (4.16)
where € is the kinetic energy of the electron. A relation between the rates of the two
processes can be derived in the same way as the relations between bound-bound absorption
and emission probabilities by using the principle of detailed balance. If o,,;(v) is the cross
section for photoionization of an atom initially in state n by a photon of frequency v, then
there is a corresponding cross section o,,.(v) for the capture of a free electron of kinetic
energy € = 1/2mwv? by the next ion in the appropriate state into state n of the atom. In
order to conserve energy and angular momentum in the process, it is necessary that this
capture be accompanied by creation of a photon of energy hv/ = 1/2mv? + |I,,|, where I,
is the ionization energy of state n. Figure 4.6 illustrates the energetics of the process.

Continuum
H*+ e(g)

H*+e(e=0)

H(nl)

H(1s)
Figure 4.6— The energetics of radiative recombination to level nl of hydrogen under

emission of a photon with frequency v.

Clearly, hdv' = mwvdv, and in thermodynamic equilibrium at temperature T we can
insist that the rate of photoionization (including stimulated recombination)

47 B, (T)

il S e /g (v)dy (4.17)

be exactly balanced by the rate of (spontaneous) recombination

v (V) f(v)dv (4.18)
where 32
f(v)dv = 4n~1/2 (%) v2e ™V /2T gy, (4.19)



is the Maxwell-Boltzmann distribution function,

2hv3 1
B,(T) = 2 ghv/kKT—1 (4-20)

is the Planck function, and

it+1 _ 3/2

N(X7) " Gim h2

is the “Saha equation” relating the densities of the recombining and recombined ions,
N(X*1) and N(X?) to the electron density in terms of the statistical weights g of the
states considered and hyy = |I,,|. Thus, in thermodynamic equilibrium:

47TB,,(T)U s

NN (X )00 (0) f(0)do = (1= e )N (xH) T2 :

(4.22)

which simplifies to:

opr(v) = Lo (2)2  oni(v) (4.23)

giy1 \mcv

a general relation independent of T. It is useful to define a recombination rate coefficient:
a,(T) = / Opr(V)of(v)dv  [cm®s™!] (4.24)
0

that provides the total rate N.a,,(T) [s7!] at which electrons with a velocity distribution
vf(v)dv are captured. For purposes of describing the relative concentrations of different
stages of ionization it is also useful to have a total recombination rate coefficient:

a(T) = Zan(T). [cm3s™!] (4.25)

In practice, for most atoms it is quite good enough to compute a,, for the lowest n
directly from the photoionization cross sections and to use approximate hydrogenic values
for higher n. See R. J. Gould (1978, Ap. J. 219, 250).

Some useful results for H" + e — H(n) + hv follow. The cross sections for hydrogen
can, of course, be computed exactly using (4.23). Fitting formulae, which are accurate to
within 1% for 2K < T < 64,000K:

a(T) = > an(T) = 1077712 {13.1119 — 2.156372 — 0.0966282> + 0.01810422:% }

(4.26)
and

ap(T) = Z an(T) = o(T) —y(T) = 1073TY  [em®s™!] (4.27)
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with x=log1oT and
y = 3.07091 — 0.618352z + 0.0161247x* — 0.00710107z" . (4.28)

For temperatures around 10K, a can also be written:

L [ 10° 0.73 .
ag ~ 10~ T [cm®s™ ] . (4.29)

The exact values are given in Table 4.9.

Table 4.9 Radiative recombination coefficients of H.

T.(K) 500 1000 2500 5000 10,000 20,000 50,000
a(T) 3.11(-12) 1.99(-12) 1.08(-12) 6.73(-13) 4.12(-13) 2.48(-13) 1.22(-13)
ap(T)  2.40(-12) 1.48(-12) 7.63(-13) 4.50(-13) 2.58(-13) 1.42(-13) 6.12(-14)

Note that the recombination process produces continuum emission and that the
photon energy hv is related to the velocity of the recombining electron v by hv =
mv?/2 + |I,|. For a distribution of electron velocities f(v)dv, the resulting emissivity
of hydrogen due to recombination is:

fo = N(H ZZ vop (v )hy% (4.30)

n=0 [=0

These photons have sufficient energy to ionize the product atom. However, with the
exception of metastable H(2s) atoms in very dense nebulae, the equilibrium populations
of the excited atoms is so low that the effect on the hydrogen ionization rate is negligible.

The recombination cross sections for hydrogen-like ions may be obtained from those
for hydrogen by a simple scaling:

az(nl|T) = Zag(nllt) , (4.31)

where t =T/2Z2.
2. Helium

a) radiative recombination

Just as for hydrogen, the He™ ions produced by photoionization can undergo radiative
recombination:

Het + e — He* + hv, (4.32)
where He* is any of the singlet or triplet states of helium. Because most of the
recombinations take place into excited states, the recombination rate coefficients for
helium are similar in magnitude to those for hydrogen. Values of the rate coefficients
for recombination ag.(T), and of the rate coefficient ay.(1 S, T) for capture directly
into the ground 1 'S, state are given in Table 4.10. They can be represented by:

104 0-672
ape(T) =43 x 10713 ( T ) [em®s™!] (4.33)
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104 480
age(1'S,T) =1.6 x 1013 (?) [em3s™!] (4.34)

Note that if helium is embedded in a gas composed mostly of hydrogen, the helium
recombination radiation may be absorbed by hydrogen. In particular, all recombination of
helium ions into excited singlet states, with the exception of the 2 'S state, are accompanied
by the emission of photons that ionize hydrogen. Recombinations into the 2 'S state are
followed by two-photon decay.

Table 4.10- He Radiative Recombination Coefficients [cm3s™!]

T.(K) 5000 10,000 20,000
Qe 6.49(-13) 4.32(-13) 2.69(-13)
apge(1'S) 2.23(-13) 1.59(-13) 1.14(-13)

As Figure 3.2 shows, this spectrum peaks around 800 A. On average, a fraction 0.56
of the decay photons has enough energy to ionize hydrogen. Three fourths of the captures
result in triplet states, which decay rapidly into the long-lived 2 3S state. At low densities,
the 2 3§ states decays radiatively and the photons ionize hydrogen. At higher densities,
the 2 38 state can be collisionally quenched so that no photons are produced.

b) dielectronic recombination

We have seen in IV A. 2. that helium (and also the heavier elements) has
doubly-excited states embedded in the continuum due to the He™ ion and free electron
states, which give rise to auto ionization. Even more important astrophysically is the
inverse process, inverse autoionization, or as it is more commonly known, “dielectronic
recombination”:

He™ + e = He(nl,n'l') — He(n"1",n'l") + hv. (4.35)
Consider for example the 2s2p 'P° state in He:
5274850 --------- —— 2s0r 2p
10
4849425 —— 2s2p P
1983108 - - - - - - s °s
He
00— 1s% 1s
He

A free electron in the vicinity of a n=2 level of the He™ ion can become “confused”
about whether it is a free electron or whether it is one of the bound electrons in a doubly-
excited He atom. There is, accordingly, a non-negligible probability for electron capture
by an excited ion directly into a doubly-excited state of the corresponding next-lower
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stage of ionization. The doubly-excited system can then either autoionize, or can undergo
a radiative transition to a bound state, which is usually singly-excited. Thus, such a
transition involves the transfer of the active electron from the nl orbital to the 1s orbital.
These lines thus lie closer in wavelength to the ni-1s transitions of He™, and are called
“satellite lines”. For example, the He 2s2p 1P° - 1825 1S transition lies at 313.8 A, whereas
the Het 2p-1s transition occurs at 303.8 A. Such satellite lines can be valuable diagnostics
of high-temperature plasmas. Dielectronic recombination is important for He and for
various Li-like ions in the solar corona, and has recently been shown to be significant in
various abundant species in gaseous nebulae.

Dielectronic recombination can greatly enhance the total recombination rate.
However, for helium all resonance states lie high in energy (the 2s2p 3P state at 53.4
eV coincides in energy with an electron of kinetic energy 28.8 eV and a He™ (1 2S) ion).
Thus dielectronic recombination of helium is significant only at high temperatures of the
solar corona.

3. Other species

a) radiative recombination

Just like He, the ions of the other elements produced by photoionization can recombine
by radiative recombination and by dielectronic recombination. The rate coefficients for
radiative recombination are similar in magnitude to the values for hydrogenic systems
with the same excess charge. This is because radiative recombination occurs into highly
excited states which are hydrogen like. Of course, contributions from captures into
occupied orbitals have to be excluded in the comparison with the hydrogenic systems.
For temperatures near T=10*K appropriate for nebulae, the rate coefficients may be
represented by:

B(T) = Cc0*/T)"x 1078 [em3s™!]. (4.36)

Values for C' and 7 are given in Table 4.11 for several ions.

b) dielectronic recombination

Dielectronic recombination of heavier species occurs by the same steps as for the case
of helium:
(i) A free electron collides with ion X™* but remains captured in an outer excited state
nl and forms with the excited core a doubly-excited state of X (™~1+_ If autoionization
occurs, the system returns to its original ionization state:

Xm+e=X"(nl — n'l')+e (4.37)

(ii) the auto-ionizing state can be stabilized by a radiative transition either of the inner
excited electron (at high temperatures) or by a radiative transition of the captured electron
to a state below the first ionization limit of X™ 1.

X™ L (nl, n'I') — X™ Y (ngly, n'') + hv . (4.38)
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Table 4.11- Rate Coefficients for Radiative Recombination
(aﬁ(T) = C’(104/T)77 x 10713 [cmBS_l])

Recombined

system® ¢ n a c n A c n
c 4.7 o0.624 c' 23 0.645 c?* 49 0.803
N 3.9 0.608 N 22 0.639 N2t 50 0.676
o 3:3  o0.678 oF 20 0.646 o?* 51 0.666
Ne 2.8 0.759 Ne® 15 0.693 net 44 0.674
Mg 2.6  0.855 Mg® 8.8 0.838 Mgt 35 0.734
si 6.5 0.601 sit 10 0.786 sit 37 0.693
s 4.7 0.630 st 18 0.686 g%t 22 0.745
Fe 1.4  0.891 Ee® 10 0.843 re?t 33 0.746
C3+ 92 0.791 C4+ 17 0.721
SRRy 0.765 n* 157 0.780 N>t 290 0.750
Ry 0.670 0% 159  0.759 0" 244  0.774
ne3t g8 0.668  Ne®* 150  0.684 Net 230 0.704
Mgt 84 0.718  Mg?*t 140  0.716 Mg>t 230  0.695
si3* 73 0.735  si®* 120  0.735 si’* 210 0.716
s3* 70 0.755 s** 120 0.701 s>t 170 0.849
re3* 78 0.682 re’t 151  0.699 re°t 262  0.728

This process produces the dielectronic satellite lines of the parent ion line nl — ngly. If
the transition is to a state above the first ionization limit, a “secondary autoionization”
can OCCur.

(iii) after the inital stabilizing transition has occurred, the singly excited state cascades
down to the ground state:

X™ Yngly, n'l') = X™ Yngly, nply) +h/' + W' + ... (4.39)
Thus, a characteristic line spectrum will occur.
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The calculations of the rate coefficients for dielectronic recombinations are far from
simple. They involve many specific computations of the energy level structure of both
singly and doubly excited states, and of the probabilities of autoionization and radiative
decay. At high temperatures, where recombination occurs mostly into core-excited
resonance states, a general formula exists which is quite successful. At low temperatures,
detailed and demanding computations appear necessary. Accurate results have been
obtained for a number of ions. For T between 5000 and 15,000K, they can be reproduced
approximately by:

aR(T) = C(10*/T)ne 10'F/T (4.40)
Values for these coefficients are given in Table 4.12.
The total recombination coefficient of species A may be approximated by

af (T) = af(T)+aZ(T) +aaB(T) , (4.41)
where off (T) is the contribution from the core-excited resonance captures. For ions of
low excess charge, off(T) is largest at low temperatures, and a%(T) dominates at high

temperatures. However, at intermediate temperatures appropriate to nebulae, ozg (T) is
often the largest term, as Table 4.13 illustrates.

c) example

Consider the dielectronic recombination of O**, with ground state configuration
1522s2. The doubly excited O3T 2F° 1s22p23p state lies 486 cm ™! above the O3* ionization
limit. Thus, the O** ion can capture an electron with an energy near 0.6 eV into the 2F°
state of 031, which then radiates to the stable O3t 2D 1s22s2p? state in a transition in
which the outer electron is transferred from the 3p orbital to the 2s orbital.

2F° o3t 15%2p%3p
1 ot 15%¢?

2D Y o3+ 15225207
2p° Y o3t 1s%25%0p

References for recombination rates:

Aldrovandi & Pequinot 1973, Astron, Astrophys. 25, 137
Pequinot & Aldrovandi 1986, Astron. Astrophys. 161, 169*
Tarter 1971, Ap. J. 168, 313; 1973 Ap. J. 181, 607
Weisheit 1973, Ap. J. 185, 877

* beware of possible errors in their discussion of ionization rates.
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Table 4.12— C and n Values for Dielectronic Recombination

Recombined
System A

2+

Z Z 0O 0O 0

2+

4

Coefficients [af (T) in eq. (4.40), 1013

1.58
114
202

36.5
401

l.16
22.1

-0.034 -0.1127

1.

256

1.339

[= D

.317
. 306

.779
. 344

.903

0.5960
0.4101
0.4398
0.5946

0.6127
0.4106

0.2769

2+

Ne

Ne2+

Ne3+

Ne4+
Mg
Al

Si

cm3s—!

378 4
6.91
332
220
762
35.7
19.1

]

Table 4.13— Radiative and Dielectronic Recombination
Coefficients at T = 10* K [107!2 cm3s™1]

Recombined

species A

O 0
N+
+

N+
+

4

Z 0O 0 0 2 2 Z 0O
® Y

=
4]
+

2z

o
N
+

uR
A
0.47
2.3
4.9
0.39
2.2
5.0
0.33
2.0
5.1
0.28
1.5
4.4
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D
A
0.18
6.1
13
0.52
2.0
2.2
0.08
1.7
11

0.45
27

Sum

0.64
8.4
18.
0.91
4.2
27
0.41
3.7
16
0.28
1.9
31

n £
'1‘129 1.1899
0.337  0.4516
1.200 0.2313
0.807 0.1702
0.998  0.19%42
0.098  0.6260
0.330 0.2276
1.325  0.1342



IV Photoionization and Recombination (continued)

C. Accidental Resonance Fluorescence

It sometimes occurs that the frequencies of allowed transitions in different atoms or
molecules are nearly equal. If one of the transitions belongs to an abundant atom and has
a high intensity in some astrophysical environment, then the other species can “see” an
anomalously intense radiation field at its transition and thus suffer an unusually high rate
of radiative excitation. A few important examples are described below.

a) Bowen fluorescence for O III

There is an accidental coincidence between the wavelength of the He II Ly « line (1s-
2p) at A=303.78 A and the O III 2p? 3P, line at A=303.80 A. This wavelength difference
corresponds to the Doppler shift for a velocity of about 20 km s~!. In most photoionized

nebulae, the line widths are typically this large or larger, so that this degree of coincidence
is for practical purposes exact.
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Figure 4.7— Schematic partial energy level diagrams of O IIT and He II showing the
coincidence of the He IT Ly o and O IIT 2p? 3P, — 2p3d ®Pg transitions near 303.80 A.
The Bowen resonance-fluorescence lines in the optical and near-UV are shown by the solid
lines, while the far-UV transitions that lead to excitatio are indicated by dashed lines.
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Table 4.14- O III Resonance-Fluorescence Lines

Transition Wavelength Relative Relative
(A) probability intensity
3p3P, - 3d3P? 3444.10 3.74 x 10~  0.277
3p3P, —3d3P9 3428.67 1.25 x 103  0.093
3p3S; —3d 3P 3132.86 1.23 x 10-%  1.000
3p3D3 - 3d 3P 2837.17 1.16 x 10-3  0.104
3p3D, — 3d3P9 2819.57 2.08 x 10°*  0.019
3p 3D, - 3d 3P} 2808.77 1.38 x 1073 0.0Q)3
3s 3P§ - 3p 35, 3340.74 1.79 x 10=%  0.136
3s 3PP - 3p 35, 3312.30 1.07 x 10=%  0.082
3s 3P0 - 3p 35, 3299.36 3.57 x 107  0.028
3s 3P -3p 3P, 3047.13 2.14 X 10-*  0.179
3s3P)-3p 3P, 3023.45 7.12 x 107%*  0.060
3s3P) —3p 3P, 3059.30 3.95 x 107*  0.033
3s 3PP - 3p 3P 3035.43 2.37 x 10-*  0.020
3s 3P -3p3P 3024.57 3.17 x 107*  0.027
3s 3P0 -3p 3D, 3757.21 3.57 x 107%  0.0002
3s3P) - 3p 3D, 3774.00 2.67 x 107°  0.0002
3s3P) - 3p 3D, 3810.96 1.80 x 10-7  0.0001
3s 3P -3p 3D, 3754.67 7.22 x 107%  0.0049
3s3P) - 3p 3D, 3791.26 241 x 1075  0.0016
3s3P) —3p3D, 3759.87 539 x 10~*  0.037

He is the second most abundant element, and in high-excitation nebulae, Het or He™"
can be the dominant stage of ionization. In those same regions, O™ will be abundant.
Both the He II and the O IIT A=303.8 A lines are “resonance transitions” meaning the
ground states, which are the most populous, are the lower states of the transitions.

The He™ ions can also re-absorb their own line photons many times before they escape
from the nebulae. The absorptions by OTT ions can be a significant contribution to the
removal of the He™ Ly a photons.

What happens to the O?* following excitation to the 3d 3P$ level? The most likely
process is simply radiative decay back to the 2p? 3P, level in the same A 303.80 A line. This
occurs about 74% of the time. The next most likely decay process, with a probability of
24%, is emission of the 2p? 3P - 3d 3P$ line at A 303.62 A. Finally, in 2% of the cases, the
3d 3P level will decay by emitting one of the six longer wavelength photons in the 3p 3Ly
- 3d 3P$ transitions illustrated in Figure 4.7. The various terms in the 3p configuration
subsequently decay through various 3s 3P° - 3p 3Ly lines lying between 3400 and 3800
A. Thus, a characteristic spectrum results, and the cascade lines in the near-ultraviolet
and visible wavelength range are prominent features of planetary nebulae and other high
excitation sources, such as optical counterparts of X-ray sources.

The proper interpretation of the line requires a careful treatment of the problem of the
scattering, escape and destruction of the He II Ly « photons. For example, a competing

— 74 —



process that destroys He II Ly a photons before they can be converted to O III Bowen
resonance-fluorescence photons is absorption due to photoionization of H and He. Detailed
calculations suggest that about 50% of the He II Ly « photons are eventually converted into
Bowen resonance-fluorescence photons. These photons are distributed among the various

individual lines as indicated in Table 4.14, in which the relative intensities are normalized
to A 3133 A.

References:

Osterbrock, D. 1987, pp. 107-111.

Flower and Perinotto 1980, MNRAS 191, 301-8
Kallman and McCray 1980, Ap. J. 242, 615
Sternberg and Dalgarno 1987, Comm. on Astrophys.
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Figure 4.8 The fluorescence spectrum of N2t produced by absorption in the transition
2p 2P§/2 - 3d ?D (X in nm).

A further remarkable coincidence occurs following the excitation of OT": one of the
lines emitted in the cascade from the 3d 3P§ level, the 2p? 3P, - 2p3s 3P1° line at 374.436
A, can be absorbed by the 2p 2P§/2 - 3d 2D transition of N*+, giving rise to emission lines

between 4635 and 4643 A. These cascade lines are illustrated in Figure 4.8.
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b) HLy fand O 1

The lines of H Ly 8 (1s - 3p) A=1025.722 and O I 3P, - 3d ®Dg, A=1025.7618 A agree
within 11.6 km/s in Doppler velocity shift at that wavelength. The excitation of O I by H
Ly [3 leads with fairly high probability to the emission of the O I 3d 3D° - 3p 3P lines at
A=11287 A, and the 3p ®P - 3s 3S¢ lines at 8446 A.

Such fluorescent emission is seen in nebulae, comets, active galaxies, novae and the
solar chromosphere. As we will see later, Ly (8 can also drive some interesting molecular
fluorescence processes.

3d 3p°
11287
3
3p°P 1028.1571
8446 1027.4307
33 Y
- 1025.7618
1306
1302
Y
X (1’ 3
\7i 2 P

Figure 4.9- The fluorescence spectrum of O produced by absorption in the 3P - 3d D°
transition (X in A).

References:

Grandi 1980, Ap. J. 328, 10

Thompson etal., 1978, Ap. J. Letters 222, 1.49
Skelton and Shine 1982, Ap. J. 259, 269
Strittmatter etal. 1977, Ap. J. 216, 23.

c) H Ly g and Mg II

The H Ly 3 (1s-3p) line at 1025.722 A also nearly coincides with the Mg II 3 S1/2
- 5 2Py )5, 2Py 5 lines at A=1025.9681 and 1026.1133 A, respectively. The shifts of these
lines are 71.85 and 114.29 km/s, respectively, so that the absorption occurs mostly in the
long wavelength wing of the Ly 3 profile. This pumping mechanism can excite a number

of Mg II f luorescence lines, most prominently at 3848, 3850; 7877, 7896; 8214, 8235; 9218,
9244 A; and 2.1, 2.4 pm.

Because these are all doublet levels, line intensities within multiplets will be sensitive
to the relative rates of absorption in the two 3s-5p resonance lines, and thus to the shape
of the Ly [ line profile:
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D. Absorption and emission of line radiation

Consider first the simple, idealized case of a source of continuum radiation viewed
through a uniform plane-parallel slab of cool, absorbing gas. Some of the background
light can be absorbed in passing through the intervening slab at frequencies at which
the atoms have allowed transitions, non-negligible populations in the lower states, (and
without a greater population in the upper state.) An absorbed photon, of course, can be
re-emitted at the “same” transition frequency, but because this spontaneous emission is
isotropic (independent of direction), the fraction of fluorescent photons emerging in the
same direction (that is, toward the observer), as the absorbed photons is negligible. We
want to describe in detail how the strength of the absorbtion is related to the abundance
of the absorbing atom and to its atomic properties.

Let I,(0) = intensity of background light as a function of v near a spectral line.
I,, = observed intensity; including absorption.
s = linear distance through slab
vy = central frequency of transition
In this simple case of pure absorption

dl,
— = —moLW)I, 4.42
s 101 (V) (4.42)
where n; is the concentration in cm ™3 in the lower state of the transition u < [ and o (V)
is the cross section for absorption in the transition. Because we are assuming a uniform
absorbing medium, only I,,(s) depends on the postion within the slab, and a simple change
of variable is possible:

dl,

Y = _J, 4.43

dr ( )
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where dr, = njoy,(v)ds is the dimensionless “optical depth”. The solution to this simple
differential equation is:
I, = L,(0)e ™ . (4.44)

For a uniform slab 7, = (n;L)o(v) where n;L = N; is the “column density” of absorbers
in cm~2 through the whole slab of thickness L.

The frequency dependence of 7, for an isolated spectral line depends upon the line
broadening mechanisms. We have already seen that a spectral line has a finite extent in
frequency simply due to the finite lifetime of the upper state which corresponds to an
uncertainty in its energy. This gives rise to a Lorentzian function (the Fourier transform
of an exponential decay):

oL(v—wo) = = iasz—) — (4.45)

in terms of a “damping” width:

ap = Y Aw/ir  [Hz. (4.46)
T

In real gases, there will usually be another important contribution to the line
broadening due to the motions of the absorbing atoms, which, due to the distribution

of “Doppler Shifts”

ov ov

— = — (4.47)
v c

allow the atoms to absorb over some finite distribution of frequencies. Microscopically,

this is usually thermal Doppler broadening with a Maxwellian distribution of speeds

characterized by a temperature T. In astrophysical contexts, there are often additional

microscopic or macroscopic motions that enlarge the broadening. As long as these motions

are basically random, the combined effect can still be well-characterized by a Maxwellian

distribution at some effective Doppler temperature T . This gives rise to a Gaussian

profile function:
1 —In2 (ﬂ ) 2
e

¢p(v — o) an o) (4.48)
/2
vo [2kTp . 1"

- X 2 4.4

ap . { i ln] (4.49)

is the ‘half-width” at half-maximum and M is the mass of the absorber. With M in amu:
o = 3.5825 x 10”1y (Tp/Mamu)*/?  [Hz (4.50)

In the astronomical literature, one often encounters the “full-width” at half peak
(FWHM) intensity of the Gaussian function in velocity units:

2
Av = —caD (4.51)
Vo
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or a “Doppler parameter” in velocity units:

_ C . o—1/2 Av Av
b = ap—in2 S L 4.52
" 2(in2)172 1.665 (4.52)

For a Gaussian function ¢(v) with Av = FWHM, the area under the curve is given
by:

ma:cA
/ d(v)dv = m —  1.064467¢mazAv . (4.53)

Veocity (v)

In general, the overall line profile (that is, the frequency dependence of the absorption
cross section) will be the convolution of ¢ and ¢p. This convolution of Lorentzian
and Gaussian functions is called a “Voigt function”, which we will write in terms of the
dimensionless relative line frequency:

r = 2 D(n2)1/2 (4.54)
ap
and the linewidth ratio o
y = —Z(In2)'/? (4.55)
ap
to be
y [ et
k = = dt . 4.56
@) = L[ e (1.5
The Voigt function is defined as normalized such that:
/ k(z,y)de = ='/? (4.57)

and the optical depth can then be written:
T, = mLook(z,y) , (4.58)

where the line-center absorption cross-section oy can be determined from the oscillator
strength:

/OO o()dy = me” fra = /Oo ok(z,y)dv (4.59)

— 0 meC -0
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Using dz = (In2)'/2/apdnu, then:

2 In2 1/2
op = 2 (l) S 0124667 [em?) (4.60)

meC s ap ap

In many real observations, there is insufficent resolution to see the full structure of the
line profile, and one is forced to deal with an integrated line strength called the “equivalent

width”, W,

W,

lo
2 [\
|5
§ |

0 Y
0 Frequency (v )

Figure 4.10- The equivalent width W, of a line.
W, = / (1—e™)dv  [HZ (4.61)

= [ M7

W, can be thought of as the width of a rectangular profile extending from I,, = 0 to
I, = I,(0) that has the same area as the actual line (see Figure 4.10). The equivalent
width is also often expressed in wavelength units:

d 2
A W, = %W,, [cm] (4.62)

W)\ — a

The measured equivalent width can be related to the column density of absorbers
through the so-called “curve-of-growth”, which is illustrated in Figure 4.11.
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Figure 4.11- Tllustration of a general curve of growth. a: linear part, b: flat part, c:
square-root part.

This characteristic behavior falls into three regimes:

I. In the limit of extremely weak lines, 7y << 1, and:

> > me?
w, -~ / T,dv Nl/ oc(v)ydv = N ful (4.63)

Thus, in this linear regime, W, is directly proportional to the column density in the
lower level N;. If W, and )\ are in A, the relation becomes

o Wi
flu)\2

II. With increasing absorption (large 79), the point is reached where virtually all
background light has been absorbed near line center, but far away from line center the
absorption cross section is orders of magnitude smaller, so that absorption in the line
wings is a negligible contribution to the total absorption; in this regime the equivalent
width increases only very slowly with increasing column density. Alternatively, this means
that a column density derived from a measured equivalent width in this regime is likely to
be rather uncertain unless the measurement errors are exceedingly small and the Doppler
width is well established. The onset of this “flat part” of the curve of growth depends
on both the Doppler width and the column density. For example, the deviation from the
linear relation (4.63) exceeds 10% when

NifruX
b

N, = 1.13x10? [em™2] (4.64)

> 1.87x 10" [s71] (4.65)
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for A in A, b = Av/1.665 in km/s, and N; in cm™2.

ITL. In the form of the curve of growth of Figure 4.11, where log(W /) is plotted vs.
log(Nf)), the curve is virtually independent of the properties of the particular absorber
until the “damping” or “square-root” part is reached. Here the Lorentzian wings of the
line profile dominate the additional absorption with increasing column density. Thus,
the absorption depends on aj, which contains the total lifetime of the upper level. The
contributions due to the extreme wings can be determined from the asymptotic form

T2 ~ nLog(y/m)? z72 (4.66)

which leads to a square-root relation between column density and equivalent width.

There is an additional kind of broadening that results from the perturbations of energy
levels and lifetimes by “collisions” with other particles in a dense gas. This is usually called
“pressure broadening” or “collision broadening”. There are at least 3 categories of theories
used to describe this: 2 of these are approximate theories for limiting cases, called “quasi-
static” and “impact” theories, and the other is an attempt at a completely quantum thoery
of line broadening. Note that line broadening effects can often be measured directly.

One theory considers a collision which interrupts the emission of a radiating atom:

AVAVAVAVAR. -
AVAV/AVAVEL

This produces a random phase shift, which manifests itself as a broadening of the
frequency distribution of emitters when the random phase interruptions are averaged over
an “ensemble” (a whole lot) of emitting atoms and collision partners. If these perturbing
collisions are characterized by a collision frequency I'..;;, then the Lorentzian part of the
line broadening is given by a total width

I'= Fnatural + 2Fcoll (467)

where 'y aturat = XAy = 1/Trqq is the natural line width. Clearly, I'.p;; must depend on
(a) the cross section for “phase interruption”; (b) gas density; (c) gas temperature (that
is, the speed of the colliding particles).

Alternatively, one can think of the ions, atoms and electrons in a dense gas as creating
an average external electric field around an atom. This quasi-static Stark effect then
weakly perturbs the energy levels of the radiating atom and gives rise to Lorentzian line
broadening. For this reason pressure broadening is sometimes called “Stark broadening”.

The broadening due to the radiative lifetime of the upper state and collisions is also
known as a homogeneous form of line broadening; each molecule may absorb or emit
radiation over the entire linewidth. A homogenous line nearly always has a Lorentzian
shape. It is really a reflection of the Heisenberg uncertainty principle; some decay process
prevents the molecule from remaining in a specified energy state for longer that At, on the
average, and the line width is I' = 1/At.
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The Doppler broadening of the line is known as inhomogeneous broadening. Figure
4.12 compares the Gaussian and Lorentzian line shapes. Note that if a species has a number
of closely spaced lines, each of which has its own homogeneous line shape, the result of
which has its own homogeneous line shape, as illustrated in Figure 4.13.

Figure 4.12- A comparison of normalized lorentzian and gaussian lines with the same
integrated area, for which the gaussian shape has a higher maximum intensity, but where
the lorentzian line shape has much more absorption (or emission) in the far line wings.
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Figure 4.13- Homogeneous (left) versus inhomogeneous (right) lineshapes. For a
homogeneous transition, excitation in any one part of the line profile results in an
interaction with all of the atoms or molecules in the sample. For a inhomogeneous
transition, the total line shape is composed of a number of sub-populations with their own
intrinsic (homogeneous) line shape that are slightly displaced in frequency with respect to
each other.
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