1. The species we're trying to make is H₂:

\[
\frac{d[H_2]}{dt} = 10^{-12} [CH^+] [H]
\]

- and

\[
\frac{d[CH^+]}{dt} = 10^{-14} [C^-] [H] - 10^{-12} [CH^+] [H]
\]

If we assume steady state for CH⁺ \(\Rightarrow \) \(\frac{d[CH^+]}{dt} = 0 \)

\[[CH^+] = 10^6 [C^-] \]

\[
\frac{d[H_2]}{dt} = 10^{-16} [C^-] [H]
\]

You showed in problem #1 that almost all carbon is ionized, so:

\[
\frac{[C^-]}{[H]} = \frac{[C^-]}{[H]} \approx 10^{-4}
\]

\[
\frac{d[H_2]}{dt} = 10^{-20} [H_2] \text{ cm}^3 \text{ s}^{-1}
\]

From class, grain formation of H₂ is

\[
(\frac{d[H_2]}{dt})_{\text{grain}} = \text{Rate (gas)}
\]

and

\[
\text{Rate (gas)} = 3 \times 10^{-17} \text{ cm}^3 \text{ s}^{-1}
\]

so,

\[
\frac{\text{Rate (gas)}}{\text{Rate (grain)}} = \frac{10^{-20}}{3 \times 10^{-17}} = 3 \times 10^4
\]

grain formation of H₂ is much more efficient
2. We are interested in the rate of formation of OH:

Mechanism (1):

\[\frac{d[OH]}{dt} = k_1 [H_3O^+] [e^-] \]

\[\rightarrow \quad \frac{d[H_3O^+]}{dt} = 0 = k_5 [H_3O^+] [H_2] - k_3 [H_3O^+] [e^-] \]

(assume steady state for all species except OH)

\[\Rightarrow [H_3O^+] = \frac{k_3 [H_3O^+] [H_2]}{k_5 [e^-]} \]

\[\frac{d[OH]}{dt} = k_4 [H_2O^+] [H_2] \]

If you continue this substitution procedure assuming steady state, you end up with

\[\frac{d[OH]}{dt} = [H] \]

(Actually, since the reactions given are the only production/loss mechanisms for the species, and in steady state, you know that all the intermediate steps will cancel.)

Mechanism (2):

\[\frac{d[OH]}{dt} = k_2 [H] [O] \]

\[\rightarrow \quad \frac{d[H]}{dt} = k_6 [H] [e^-] - k_7 [H] [O] - [H] \]

\[[H] = \frac{k_6 [H] [e^-]}{k_7 [O]} \]

so:

\[\frac{d[OH]}{dt} = \frac{k_6 [H] [e^-] * k_7 [O]}{k_7 [O]} \]

Before we evaluate these expressions, let's do the next part of the problem 1°. (It will make the 2nd expression a little simpler.)

Loss of H:

a) \[\frac{d[H]}{dt} = [H] = 10-7 [H] \]
b) \(\frac{d[H]}{dt} = k[H][O] \)

So the relative rates are

\[
\frac{\text{photodetachment}}{\text{reaction with O}} = \frac{10^7}{k_7[O]} \sim \frac{10^7}{10^{29}10^{10}} \sim 10^4
\]

So photodetachment is much more important as a loss mechanism for H.

So, Mechanism(1): \(\frac{d[OH]}{dt} = [H] \)

Mechanism(2): \(\frac{d[OH]}{dt} = \frac{k_6k_7[O][H][e^-]}{k_7[O]} \sim \frac{k_6k_7[O][H][e^-]}{k_7[O]} \)

\[
(2) \quad k_6k_7[O][e^-] \quad 10^{15} \times 10^{16} \times 10^{16} \times (10^{15} \times 10^{15}) \times (10^{15} \times 10^{12})
\]

So mechanism (1) is \(\sim 10^5 \) times more efficient at producing OH.

Finally,

\[
\begin{align*}
\text{H}^+ + O & \rightarrow O^+ + H & k = 10^4 \times e^{-222000} = 9.8 \times 10^{11} \sim 10^{36} \\
\text{H}^+ + e^- & \rightarrow H + h & k = 10^{12} \text{ (same as He}^+ + e^- \text{ in notes)}
\end{align*}
\]

Since \(\text{H}^+ \) will react with O faster than \(e^- \), and \([O]/[e^-] \sim 1 \), mechanism (1) will go on once \(\text{H} + \text{C.R.} \) happens.
3. The fractionation equation is:

\[
\frac{[\text{CH}_3\text{D}]}{[\text{CH}_4]} = \frac{g \lambda e_{[\text{HD}]}}{[\text{H}_2] k_i e^{-T/k} + k_a [\text{M}] + k_e [e]}
\]

Typical values for some of the variables above are, from Duley & Williams:

- \(k_i - k_a \sim 10^9 \text{ cm}^3 \text{ s}^{-1}\)
- \(k_e \sim 10^6 \text{ cm}^3 \text{ s}^{-1}\)
- \([\text{H}_2] \sim \frac{1}{2} n_{\text{total}}\)
- \([\text{M}] \sim 10^{-1} n_{\text{total}}\)
- \([\text{HD}] \sim 2 \times 10^{-5} n_{\text{total}}\)
- \(E \sim 100 \text{ K}\)

We are given \(g \sim 1/5\) and \([e]\) for dense clouds is \(\sim 10^{-7} [\text{H}_2]\)

\[
\Rightarrow \frac{[\text{CH}_3\text{D}]}{[\text{CH}_4]} = \frac{1/5 \times 10^9 \times 2 \times 10^5 n_{\text{total}}}{0.5 n_{\text{total}} + 10^{-7} e^{-7 + 10^9 \times 10^5 n_{\text{total}} + 10^5 \times 10^7 n_{\text{total}}} e^-}
\]

at 10 K:

\[
\frac{[\text{CH}_3\text{D}]}{[\text{CH}_4]} \sim 0.02
\]

The only temperature dependant term is the 1st one in the denominator, and if \(T \cdot 12\text{K}\), it is relatively small compared to the other terms.

Note that the amount of fractionation is independent of total number density here.

\(\text{CH}_3\text{D}\) has a small dipole moment (\(\sim 0.026\) Debye), and thus it has a rotational spectrum and can be observed.
4. Time rate-of-change of $[AB]$

$$\frac{d[AB]}{dt} = k_1[AB] - [AB] (k_2 + k_3[C])$$

$\frac{d[AB]}{[AB] (k_2 + k_3[C]) - k_1[AB]} = dt$ \hspace{1cm} (in the form $dx/(Ax+B) = dt$)

$$\ln \left[\frac{[AB] (k_2 + k_3[C]) - k_1[AB]}{(k_2 + k_3[C])} \right] = t + \text{const.}$$

And with $[AB]_{t=0} = 0$:

$$\frac{\ln(-k_1[AB])}{(k_2 + k_3[C])} = \text{const.}$$

So:

$$\ln \left[\frac{[AB] (k_2 + k_3[C]) - k_1[AB]}{(k_2 + k_3[C])} \right] = -t + \ln(-k_1[AB])$$

$\ln \left[\frac{[AB] (k_2 + k_3[C]) - k_1[AB]}{(k_2 + k_3[C])} \right] = -t^*$

set $(k_2 + k_3[C]) = t_{eq}$, then:

$$[AB] (k_2 + k_3[C]) - k_1[AB] \cdot (-k_1[AB])^t = e^{t_{eq}}$$

$$[AB] = \frac{k_1[AB] \cdot (-1 \cdot e^{t_{eq}})}{(k_2 + k_3[C])}$$

i) Diffuse cloud: \hspace{1cm} $t_{eq} = (10^{-10} + 10^{*10^{-2}})^t = 9.09 \times 10^9$ sec = 290 yrs

ii) Dense cloud: \hspace{1cm} $t_{eq} = (0 + 10^{*10^{-5}})^t = 10^{14}$ sec = 3.2x10^5 yrs

In diffuse clouds, there is lots of light, which leads to fast destruction and quick
equilibrium.
5. We said to ignore a few reactions to make the problem simpler. The important reactions and their rate coefficients (from the notes) are:

\[
\begin{align*}
N + N &\rightarrow N_2, \quad k_1 = 3.43 \times 10^3 \text{ cm}^3/\text{s} \\
N + H &\rightarrow NH, \quad k_2 = 1.94 \times 10^{12} \text{ cm}^3/\text{s} \\
NH + H &\rightarrow NH_2, \quad k_3 = 1.94 \times 10^{12} \text{ cm}^3/\text{s} \\
NH_2 + H &\rightarrow NH_3, \quad k_4 = 1.94 \times 10^{12} \text{ cm}^3/\text{s}
\end{align*}
\]

Qualitatively, once N is adsorbed on the grain surface, it will eventually either go into \(N_2 \) or \(NH_3 \). (NH and \(NH_2 \) are not sinks for large amounts of \(N \). If there is enough H on a grain for \(N \) to go to \(NH \), then since \(k_2 = k_3 = k_4 \), \(NH_2 \) will quickly be made.) What governs the final nitrogen budget of either \(N_2 \) or \(NH_3 \) is the amount of H on a grain surface. If H is lower than a certain amount, \(N_2 \) is the favored product. If H is higher, then \(NH_3 \) is dominant. The amount of H on grains will be considered constant here, which isn't correct, but makes things easier. In dark clouds, where this chemistry is happening, atomic H is small compared to \(H_2 \), and since it is so volatile, its abundance on grain surfaces will be even less.

Now let's get more quantitative. \(N \) starts as atomic and in the gas phase. So, the amount of \(N \) in the gas phase is:

\[
d[\text{[N]_{gas}}]/dt = -S \sigma v \text{[grains]} [\text{[N]_{gas}}]
\]

\[
[\text{[N]_{gas}}] = [\text{[N]_{gas}}]_0 \exp\{ -S \sigma v \text{[grains]} t \}
\]

where

\[
S = \text{sticking coefficient of } [\text{[N]_{gas}}] = 1 \\
\sigma = \text{cross section of grains} \sim 10^{-6} \text{ cm}^2 \\
v = \text{velocity of } [\text{[N]_{gas}}] \sim 3 \times 10^4 \text{ cm/sec} \\
\text{[grains]} = \text{grain # density} = 10^{11} \text{H}_{\text{total}} \sim 10^{-8} \text{ cm}^3
\]

\[
[\text{[N]_{gas}}]_0 = 10^4 \text{H}_{\text{total}} \sim 1 \text{ cm}^3
\]

So:

\[
[\text{[N]_{gas}}] \sim \exp\{-3 \times 10^{-14} t\} \text{ due to depletion on grains}
\]

Since \(N \) must get onto grains before it produces molecules (in this problem at least), the next equation we need is the time rate of change of \([\text{[N]_{gas}}] \):

\[
d[\text{[N]_{gas}}]/dt = S \sigma v \text{[grains]} [\text{[N]_{gas}}] - 2k_1 [\text{[N]_{gas}}]^2 - k_2 [\text{[N]_{gas}}][\text{[H]_{gas}}]
\]

= \text{gas-phase depletion} - \text{loss to } N_2 - \text{loss to } NH (NH_2 \text{ eventually})

Specifically:

\[
d[\text{[N]_{gas}}]/dt = (1 \times 10^{39} + 3 \times 10^8) 10^4 \exp\{-3 \times 10^{-14} t\} - 2 \times 3.43 \times 10^3 [\text{[N]_{gas}}]^2 \\
- 1.94 \times 10^{12} [\text{[N]_{gas}}][\text{[H]_{gas}}]
\]
\[
\frac{d[N_{\text{grain}}]}{dt} = (3\times10^{-14}) \exp[-3\times10^{-14}t] - 2\times3.43\times10^5 [N_{\text{grain}}]^2 - 1.94\times10^{12} [N_{\text{grain}}] [H_{\text{grain}}]
\]

This equation doesn’t lend itself to a quick analytical solution, but we can simplify the problem. Note that if \([N]/[H]\) is much larger than some value, the second term is much greater than the third term and vice versa if \([N]/[H]\) is small. A more quantitative comparison:

2\text{nd} and 3\text{rd} terms equal if

\[
2\times3.43\times10^5 [N_{\text{grain}}]^2 = 1.94\times10^{12} [N_{\text{grain}}] [H_{\text{grain}}]
\]

\[
[N_{\text{grain}}] / [H_{\text{grain}}] = 2.9\times10^6
\]

So if \([N_{\text{grain}}] / [H_{\text{grain}}] >> 2.9\times10^6\), expect only \(N_2\) to be produced

and if \([N_{\text{grain}}] / [H_{\text{grain}}] << 2.9\times10^6\), only \(NH_3\) will be produced

This number is much greater than unity because \(H\) migrates much faster than \(N\) on a grain surface.

But if we can solve the problem more completely by realizing that individual reactions (adsorption + reaction) take place on much faster timescales than cloud lifetimes. This means that \(d[N_{\text{grain}}] / dt\) at any given time is very small and the system is almost in steady state. Thus we can approximate by saying at any given time \(d[N_{\text{grain}}] / dt \approx 0\), and then find \(N_{\text{grain}}\) at that particular time:

\[
0 = d[N_{\text{grain}}]/dt = -(3\times10^{-14})\exp[-3\times10^{-14}t] + 2\times3.43\times10^5[N_{\text{grain}}]^2 + 1.94\times10^{12}[N_{\text{grain}}][H_{\text{grain}}]
\]

and plug in different times and solve for \(N_{\text{grain}}\) (given a constant \(H_{\text{grain}}\)).

Once we know \(N_{\text{grain}}\), we know the rate of production of \(N_2\) and \(NH_3\):

\[
\frac{d[N_2]}{dt} = 2\times3.43\times10^5[N_{\text{grain}}]^2
\]

\[
\frac{d[NH_3]}{dt} = k_4 [N_{\text{grain}}] [H] - 1.94\times10^{12}[N_{\text{grain}}][H_{\text{grain}}]
\]

Plots of these for \([H] = 10^{-16} \text{ cm}^{-3}\) and \([H] = 10^{-20} \text{ cm}^{-3}\) are attached.

b) I find that at \([H_{\text{grain}}] \approx 3.7\times10^{-16}, N_2\) and \(NH_3\) are produced at about the same rate. So if \([H_{\text{grain}}] >> 3.7\times10^{-16}, NH_3\) will be strongly favored, if \([H_{\text{grain}}] << 3.7\times10^{-16}, N_2\) will be the dominant product.