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Global positioning systems (GPSs) and geographical information systems (GISs) have been widely used to collect and synthesize spatial
data from a variety of sources. New advances in satellite imagery and remote sensing now permit scientists to access spatial data at
several different resolutions. The Internet facilitates fast and easy data acquisition. In any one study, several different types of data may
be collected at differing scales and resolutions, at different spatial locations, and in different dimensions. Many statistical issues are
associated with combining such data for modeling and inference. This article gives an overview of these issues and the approaches for
integrating such disparate data, drawing on work from geography, ecology, agriculture, geology, and statistics. Emphasis is on state-of-
the-art statistical solutions to this complex and important problem.
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1. INTRODUCTION

One of the most challenging and fascinating areas in spatial
statistics is the synthesis of spatial data collected at different
spatial scales. Advances in satellite imagery and remote sens-
ing now permit scientists to access spatial data at several dif-
ferent resolutions. For example, data from Landsat thematic
mapper (TM) scenes have a resolution of 30 m2 (the size of the
area on the ground represented by each unit in the image), the
low-cost advanced very-high-resolution radiometer (AVHRR)
has a much coarser resolution (2.2–16 km2), and aerial pho-
tographs can be digitized to a very � ne resolution (1 m2 or
smaller). The advent of the Internet has led to an explosion in
the number of readily available datasets. Studies working with
disparate data at multiple scales have become common, caus-
ing increased concern over issues surrounding scale. Recent
advances in geographic information systems (G ISs) make it
possible to use spatial data from different resolutions and com-
bine them with other types of disparate spatial information
(e.g., networks, roads, utility pipelines, census tract informa-
tion). Users of spatial information are frequently faced with
the problem of how best to integrate such information.

The overall problem of “incompatible” spatial data has been
encountered in several � elds of study, and numerous terms
have been introduced to describe one or more facets of the
problem as well as various solutions to it. These terms include
the ecological inference problem, the modi� able areal unit
problem, spatial data transformations, the scaling problem,
inference between incompatible zonal systems, block kriging,
pycnophylactic geographic interpolation, the polygonal over-
lay problem, areal interpolation, inference with spatially mis-
aligned data, contour reaggregation, multiscale and multires-
olution modeling, and the change of support problem. In this
article, we give a multidisciplinary history of this problem,
with a description of early proposed solutions. We then review
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more recent statistical approaches, emphasizing the underlying
assumptions and evaluating the progress made toward com-
bining incompatible spatial data.

2. A HISTORICAL PERSPECTIVE

The choice of an appropriate scale for the study of spa-
tial processes is an extremely important one because mecha-
nisms vital to the spatial dynamics of a process at one scale
may be unimportant or inoperative at another. Moreover, rela-
tionships between variables at one scale may be obscured or
distorted when viewed from another scale. This is particu-
larly true in the study of human, animal, and plant popula-
tions and has led many researchers in agriculture, geography,
sociology, statistics, ecology, and the earth and environmen-
tal sciences to consider scale issues in detail (Fair� eld Smith
1938; Yule and Kendall 1950; Robinson 1950; Selvin 1958;
Matheron 1963; Hannan 1971; Moellering and Tobler 1972;
Ghil, Cohn, Tavantzia, Bube, and Isaacson 1981; Morganstern
1982; Openshaw 1984; Turner, O’Neill, Gardner, and Milne
1989; Fotheringham and Wong 1991; Daley 1991; Richard-
son 1992; Levin 1992; Cressie 1993a, 1996; Jelinski and Wu
1996; King 1997).

2.1 The Modi’ able Areal Unit Problem

In many instances, spatial aggregation is necessary to cre-
ate meaningful units for analysis. This latter aspect was per-
haps best described by Yule and Kendall (1950, p. 312), who
stated that “geographical areas chosen for the calculation of
crop yields are modi� able units and necessarily so. Since it is
impossible (or at any rate agriculturally impractical) to grow
wheat and potatoes on the same piece of ground simultane-
ously we must, to give our investigation any meaning, con-
sider an area containing both wheat and potatoes and this area
is modi� able at choice.” Geographers have long had an appre-
ciation for the problems associated with the use of modi� able
units. These problems led Openshaw and Taylor (1979) to coin
the term modi� able areal unit problem, now often referred to
simply as the MAUP.

Gehlke and Biehl (1934) � rst documented that statistical
inference could change with scale using two census tract vari-
ables. They found that when contiguous census tracts were
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grouped to form larger areas, the magnitude of the correla-
tion coef� cient between the two variables increased. However,
when random census tracts were grouped, the correlations
were unaffected by the group size. The impact of different
grouping methods, such as random, by proximity, or by values
of either the dependent or independent variable, was then stud-
ied by Yule and Kendall (1950), Blalock (1964), and Clark and
Avery (1976). When random grouping was used, there was no
systematic effect on the correlation coef� cient or on the esti-
mated slope parameter from simple linear regression. When
the grouping was based on values of the dependent variable,
both the correlation coef� cient and the estimated slope param-
eter increased with scale. If the grouping criterion was based
on values of the independent variable, then the correlation
coef� cient increased with increasing aggregation, but group-
ing had no systematic effect on the estimated slope param-
eter. Finally, when proximal units were grouped, the estimates
of both the correlation coef� cient and the slope parameter
increased with the level of grouping, although the correlation
coef� cient increased only up to a certain level of aggrega-
tion, after which the correlations began to decrease. To better
understand the nature of the problem and to suggest ef� cient
groupings for geographical data, Openshaw and Taylor (1979)
considered 99 counties in Iowa and constructed all possible
groupings of these counties into larger districts. Their results
were somewhat startling. When the correlation between the
percentage of Republican voters and the percentage of elderly
voters was considered, 12 districts could be contrived to pro-
duce correlations ranging from ƒ097 to C099. Moreover, no
obvious relationship seemed to exist between the spatial char-
acteristics of the districts and the variation in the resulting
correlation coef� cients.

These studies illustrate that the MAUP is two interrelated
problems. The � rst problem concerns the different inferences
obtained when the same set of data is grouped into increas-
ingly larger areal units. Often referred to as the scale effect
or aggregation effect, this has received the most attention by
statisticians. The second problem, often termed the grouping
effect or the zoning effect, considers the variability in results
due to alternative formations of the areal units leading to dif-
ferences in unit shape at the same or similar scales (Openshaw
and Taylor 1979, 1981; Openshaw 1984; Wong 1996). Both
issues can be, and often are, present in a single analysis.

Theoretical reasons for the increase in correlations as the
level of aggregation increases have been provided in the
works of Robinson (1950), Prais and Aitchison (1954), Robin-
son (1956), and Cramer (1964) in the context of the simple
linear regression model. Prais and Aitchison (1954) devel-
oped the use of grouping matrices to measure the group-
ing effects and suggested weighted least squares for unbiased
estimation of the slope coef� cient. This idea was extended
by Williams (1976), Haitovsky (1984), and Arbia (1986) to
more complicated grouping arrangements and the use of gen-
eralized least squares. However, the loss of ef� ciency result-
ing from aggregation cannot be removed simply by using a
weighted analysis. Thus correlation coef� cients and signi� -
cance tests based on aggregated data tend to be in� ated. Areal
weighting, � rst suggested by Robinson (1956), is an effec-
tive solution to the MAUP only in very specialized situa-
tions (Thomas and Anderson 1965), and in general will not

solve the problem caused by the zoning effect. The effects
of the MAUP go beyond such simple statistics as the vari-
ance and the correlation coef� cient discussed here. Inferen-
tial problems also occur in multivariate regression analysis
(Fotheringham and Wong 1991), Poisson regression (Amrhein
and Flowerdew 1992), hierarchical random coef� cient mod-
els (Goldstein 1995; Steel and Holt 1996), spatial interac-
tion models (Putnam and Chung 1989), spatial autocorrelation
statistics (Jelinski and Wu 1996), and undoubtedly in many
other statistical models and estimation procedures.

2.2 The Ecological Fallacy

In epidemiology, the term ecological inference refers to the
process of deducing individual behavior from aggregate data.
This term is from Robinson (1950), who noted that in eco-
logical correlation, the statistical object is a group of persons.
He concluded that ecological and individual correlations are
almost certainly not equal, leading him and others to ques-
tion the results of numerous studies in which conclusions on
individual behavior had been drawn from grouped data. Thus
the ecological fallacy occurs when analyses based on grouped
data lead to conclusions different from those based on indi-
vidual data (Selvin 1958). The resulting bias is often called
“ecological bias” (Richardson 1992; Greenland and Robins
1994). This is comprised of two components: aggregation bias
due to the grouping of individuals and speci�cation bias due
to the differential distribution of confounding variables cre-
ated by grouping (Morganstern 1982). These are analogous to
the scale and zoning effects in the MAUP, and the ecologi-
cal inference problem can be viewed as a special case of the
MAUP and not the converse, as advocated by King (1997).

Ecological bias has been well documented in the litera-
ture (Robinson 1950; Richardson, Stucker, and Hemon 1987;
Piantadosi, Byar and Green 1988; Greenland and Morganstern
1989; Walter 1991; Richardson 1992; Klein and Freedman
1993), as have “inference rules” and “solutions” (Goodman
1959; Firebaugh 1978; Richardson 1992; King 1997). Cleave,
Brown, and Payne (1995) and King (1997) have provided crit-
ical discussions of some of these in the context of contingency
table analysis where individuals are divided into areal units
(e.g., census tracts, voting districts), and then cross-classi� ed
by other variables (e.g., sex, race). Often the cause of speci� -
cation bias is the failure to incorporate relevant spatial infor-
mation about individuals (e.g., Klein and Freedman 1993).
This type of analysis is not of primary interest here. Instead,
our focus is on spatial data and methods for combining spatial
data from disparate sources.

2.3 Sources of the Modi’ able Areal Unit Problem
and Ecological Bias

The smoothing effect that results from averaging is the
underlying cause of both the scale problem in the MAUP
and aggregation bias in ecological studies. As heterogeneity
among units is reduced through aggregation, the uniqueness
of each unit and the dissimilarity among units is also reduced.
There is, however, another mitigating factor: spatial autocor-
relation. The decrease in variance is moderated by the positive
autocorrelation among the original observations, and exacer-
bated by negative autocorrelation. Arbia (1986) and Cressie
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(1993b) have illustrated the effect of autocorrelation on the
variance of the sample mean. When areal units are similar
to begin with, the aggregation process results in much less
information loss than when the units are highly dissimilar.
To further compound the problem, the aggregation process
itself induces positive spatial autocorrelation, particularly if
the aggregation process allows overlapping units (e.g., mov-
ing averages). Cross-correlations with variables in neighboring
units also can affect the results (Wong 1996).

The smoothing effect and resulting alterations in the spa-
tial autocorrelation of the units are also sources of the zoning
effect. The MAUP does not exist, or at least its effects are
much less pronounced, when aggregation of areal units is per-
formed in a noncontiguous or spatially random fashion. Only
when contiguous units are combined, altering the spatial auto-
correlation among the units, is the zoning effect of MAUP
most apparent. Because the variation among the original areal
units is not uniform over the entire region, merging smaller
units is analogous to smoothing different combinations of spa-
tial neighbors. Depending on the similarity of the neighbors,
different zoning rules may lead to different analytical results.
Thus, given the plethora of ways of combining even a rela-
tively small number of spatial units, it is not hard to see how
one could produce “a million or so correlation coef� cients” as
Openshaw and Taylor (1979) found.

The complex facets of the smoothing effect can be very dif-
� cult to sort out in any given application, leading to a vast lit-
erature on this problem. Some information is lost by aggregat-
ing and going to increasingly larger scales. Systematic effects,
caused by either the aggregation aspect or the zoning aspect of
the MAUP, depend on the spatial relationships among the orig-
inal data values, the statistics being calculated, and the way in
which the units are aggregated. Thus the effects of the MAUP
and ecological bias that may occur in any particular appli-
cation are often dif� cult or impossible to ascertain. But this
fundamental understanding of the problem makes it clear that
any solution must � nd a way to (1) account for or circumvent
the loss of information due to aggregation and (2) relate the
variation among the aggregated units to the variation among
the original units composing each aggregate. Although dif� -
cult, this can be done, as described in Sections 314, and 5.

2.4 The General Change of Support Problem

The different types of spatial data (point, line, area, sur-
face), occurring naturally or as a result of the measurement
process, potentially allow many ways of integrating these dif-
ferent types of spatial data. Arbia (1989) uses the term spatial
data transformations to refer to situations in which the spa-
tial process of interest is inherently of one form but the data
observed are of another form, resulting in a “transformation”
of the original process of interest. For example, sometimes
the data are just not available at the desired scale of interest.
Meteorologic processes occur over a continuum, but only point
observations along such a surface can be recorded. Individual-
level inference may be desired, but to ensure data con� den-
tiality, only aggregate data are made available. These situa-
tions and all of Arbia’s spatial data transformations are special
cases of what is called the change of support problem (COSP)
in geostatistics. The term “support” has come to mean simply

the size or volume associated with each data value, but the
complete speci� cation of this term also includes the geomet-
rical size, shape, and spatial orientation of the regions associ-
ated with the measurements (see, e.g., Olea 1991). Changing
the support of a variable (typically by averaging or aggrega-
tion) creates a new variable. This new variable is related to the
original one, but has different statistical and spatial properties.
The problem of how the spatial variation in one variable asso-
ciated with a given support relates to that of the other variable
with a different support is the COSP. Table 1, modi� ed from
Arbia (1989), delineates some common COSPs.

Both the ecological inference problem and the MAUP are
just speci� c COSPs. Many other terms have also been intro-
duced to describe particular COSPs and solutions to particu-
lar COSPs including the scaling problem, inference between
incompatible zonal systems, block kriging, pycnophylactic
geographic interpolation, the polygonal overlay problem, areal
interpolation, inference with spatially misaligned data, con-
tour reaggregation, and multiscale and multiresolution model-
ing. Many of these are discussed in more detail in subsequent
sections.

COSPs may result when studying a single spatial variable
or when trying to relate two spatial variables of different
supports. For example, consider a retrospective epidemiologic
study designed to measure the effect of air quality on mortal-
ity or morbidity. Often in such studies, only aggregate health
data are available, re� ecting cost, time, and con� dentiality
considerations. This is an area-to-point COSP, because aggre-
gate data must be used to make inferences about individuals.
Another COSP problem results when trying to link the expo-
sure data to the health outcome information, because the two
variables have inherently different scales. This serves to illus-
trate a more fundamental problem not alleviated by even the
most sophisticated measurement process. Disease is speci� c
to an individual, but air quality varies over a continuum—how
can these two different types of data be related in a way that
permits valid inference?

Table 1. Examples of COSPs

We observe But the nature of
or analyze the process is Examples

Point Point Point kriging; prediction of
undersampled variables

Area Point Ecological inference;
quadrat counts

Point Line Contouring

Point Area Use of areal centroids; spatial
smoothing; block kriging

Area Area The MAUP; areal interpolation;
incompatible/misaligned zones

Point Surface Trend surface analysis;
environmental monitoring;
exposure assessment

Area Surface Remote sensing; multiresolution
images; image analysis
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3. GEOSTATISTICAL SOLUTIONS TO THE CHANGE
OF SUPPORT PROBLEM

Many of the statistical solutions to the COSP can be traced
back to Krige’s “regression effect” and subsequent correc-
tions used in mining blocks of ore in the 1950s (Krige 1951).
These were more formally developed into the beginning of
the � eld of geostatistics by Matheron (1963). Point kriging is
one solution to the point-to-point COSP, but geostatistics was
really invented for more general COSPs. The basic geostatisti-
cal concepts of support and change of support have been pre-
sented by Clark (1979) and Armstrong (1999). More general
solutions to change of support problems have been discussed
by Journel and Huijbregts (1978), Chiles and Del� ner (1999),
and Cressie (1993a, 1996).

3.1 Block Kriging

Consider the process 8Z4s5 2 s 2 D <d9, where Z4s5 rep-
resents the value of the random variable at a known loca-
tion s and s varies continuously over a spatial domain D.
Assume that Z4s5 has mean Œ4s5 and covariance func-
tion cov4Z4u51 Z4v55 D C4u1v5 for u1 v in D. Suppose that
instead of observing a realization of this process, data
Z4B151Z4B251 : : : 1 Z4Bn5 are collected, where

Z4Bi5 D 1
—Bi

—

Z

Bi

Z4s5ds (1)

and —Bi
— is the volume of Bi D1 i D 1121 : : : 1 n. In geo-

statistics, Bi is called the spatial support of Z4Bi5. Assume
that for B D, inference is to be made on Z4B51 B 6D Bi1 i D
11 21 : : : 1 n. The COSP is concerned with drawing infer-
ence on Z4B5 from data Z4B151 Z4B251 : : : 1Z4Bn5. This can
be done if we can derive the distribution of Z4B5 (or at
least its � rst two moments in the linear case) from the data
Z4B151Z4B251 : : : 1 Z4Bn5.

The moments of Z4B5 can be derived from the moments
of the underlying process. Thus, if E4Z4s55 D x4s50Â, where
x4s5 D 4x14s51 x24s51 : : : 1 xp4s550 is a p� 1 vector of explana-
tory variables, then E4Z4B55 D x4B50Â, where x4B5 D
4x14B51x24B51 : : : 1 xp4B550, and xj4B5 D 1

—B—

R
B

xj4u5du1 j D
11 21 0 0 0 0 0 0 1 p (see Cressie 1996). Note that the regression
coef� cients Â D 4‚11‚21 0 0 0 1‚p50 are invariant to the change
of support if it is also re� ected in the explanatory variables
(Arbia 1989; Cressie 1996). The cov(Z4Bi51Z4Bj55 may be
written as

cov4Z4Bi51Z4Bj55 D SC4Bi1 Bj5

D
Z

Bj

Z

Bi

C4u1v5du dv=—Bi
——Bj

— (2)

(see Journel Huijbregts 1978; Cressie 1993b, 1996). Because
“block support” covariances (i.e., those pertaining to support
B) can be expressed in terms of “point support” covariances
(i.e., those pertaining to support s), (2) forms a basis for solu-
tions to the COSP. It is important to note that the behavior of
the covariances depends not only on the point support covari-
ance, but also on the speci� c blocks (and not just their vol-
umes) considered.

The solution to most COSPs requires spatial prediction. A
common inferential problem is the prediction of Z4B5 from
point samples Z4s151 Z4s251 : : : 1 Z4sn5. In linear geostatistics,
this predictor is called the universal block kriging predictor
and is given by bZ4B5 D Pn

iD1 ‹iZ4si5, where optimal weights
8‹i9 are obtained by solving (Journel and Huijbregts 1978;
Chiles and Del� ner 1999)

nX

kD1

‹kC4si1 sk5 ƒ
pX

jD1

mjxj4si5 D SC4B1 si5 i D 11 : : : 1 n

and

nX

iD1

‹ixj4si5 D xj4B5 j D 11 0 0 0 1 p0 (3)

These equations result from minimizing prediction mean-
squared error (PMSE) subject to unbiasedness constraints as
in best linear unbiased prediction and universal kriging. The
mj are Lagrange multipliers from the constrained minimiza-
tion, and C4B1 si5 is the point-to-block covariance given by

SC4B1 si5 D cov4Z4B51 Z4si55 D
Z

B

C4u1v5du dv=—B—0 (4)

The prediction PMSEs look similar to those associated with
the universal (point) kriging predictor as given by Chiles and
Del� ner (1999).

The covariance function, C4¢5 (here a point-to-point covari-
ance), is assumed known for theoretical derivations, but is
then estimated and modeled with a valid positive de� nite func-
tion based on the data. In practice, integrals are computed
by discretizing B into points, 8u0

j9, so that (4) is approxi-
mated using SC4B1 si5 1=N

PN
jD1 C4u0

j1 si5. Thus, given obser-
vations at locations with point support, block kriging can be
used to predict the average value of the process at a larger
scale, accounting not for only the size, but also for the shape
and orientation of the blocks, and hence is a solution to the
point-to-area COSP. Carroll, Day, Cressie, and Carroll (1995)
used these ideas to combine both ground-based point obser-
vations with areal block measurements into a single analysis
that accounted for the differing supports.

Now consider data with support smaller than the block
for which prediction is desired but larger than point sup-
port. A practical application of this problem is one where an
attribute is measured for census tracts or zip codes and pre-
diction of this attribute at the county level is desired. Thus
Z4A151 : : : 1Z4An5 are observed and Z4B5, with —Ai

— < —B—, is
to be predicted. Note that Z4Ai5 is still related to the point
support covariance through a relationship analogous to (1).
The optimal linear predictor of Z4B5 based on data 8Z4Ai59

is bZ4B5 D Pn
iD1 ‹iZ4Ai5, where the optimal weights 8‹i9 are

solutions to the equations obtained by replacing xj4si5 with
xj4Ai5 and replacing the point-to-point covariances C4si1 sj5

and the point-to-block covariances SC4B1 si5 in (3) with

SC4Ai1Aj5 D cov4Z4Ai51Z4Aj55

D
Z

Aj

Z

Ai

C4u1 v5du dv=—Ai
——Aj

—1 (5)
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and

C4B1Ai5 D cov4Z4B51 Z4Ai55

D
Z

B

Z

Ai

C4u1v5du dv=—B——Ai
—0

Because data on any support can be built from data with point
support, these relationships can be used for both the case
where —Ai

— < —B— (aggregation) and the case where —B— < —Ai
—

(disaggregation). However, unlike in the previous case, where
we observed point support data and hence could estimate the
point support covariance function, C4u1v5, in practice this
function cannot be estimated directly from aggregate data.
Cressie (1993b) suggested a practical approach to building a
point-level model in which a parametric form for C4u1v5 is
assumed and the theoretical covariance on the right side of
(5) is equated to the empirical covariance function of Z4A5,
estimated and modeled from available data. Once the param-
eters of the point-to-point covariance function are estimated,
the foregoing methods can be used to aggregate and disaggre-
gate data with any support. Gelfand, Zhu, and Carlin (2001)
eloquently implemented this idea using Bayesian hierarchical
models and Gibbs sampling.

In the bivariate COSP based on a linear regression situa-
tion where Y 4s5 D X4u5 C …4s5 and the explanatory covariate
X4u5 is measured at different locations than the response Y 4s5,
kriging and block kriging can be used to form part of a solu-
tion to the COSP. First, kriging can be used to predict X4s5.
Point kriging can be used if both s and u have point support,
and block kriging can be used if s and/or u have nonpoint
support. Kriging variances for both point and block kriging
can also be easily obtained. This converts the COSP into a
spatial “errors-in-variables” problem, Y 4s5 D bX4s5 C …04s5, in
which current methods and software in this area (e.g., Littell,
Milliken, Stroup, and Wol� nger 1996) can then be used. Alter-
native approaches are described in subsequent sections.

Block kriging is routinely used to solve the point-to-area
COSP in geostatistics. Like kriging, it is relatively � exible and
applicable to a wide variety of problems, and there are many
choices for covariance models and parameter estimation. How-
ever, it does require inversion of large matrices and thus can
be computationally prohibitive with large datasets. Its use for
other COSPs, although theoretically possible, has been lim-
ited, largely because of a lack of need in mining applications
and confusion with ordinary kriging.

3.2 Cokriging

Multivariate spatial prediction, or cokriging, was developed
to improve the prediction of an “undersampled” spatial vari-
able by exploiting its spatial correlation with a related spatial
variable that is more easily and extensively measured. Con-
sider predicting a spatial variable of interest, Z4s05, from data
Z4s151 Z4s251 : : : 1Z4sn5, and X4u151X4u151 : : : 1 X4um5. The
spatial locations denoted by 8uj9 need not coincide with the
spatial locations denoted by 8si9. For simplicity, assume that
both processes Z4¢5 and X4¢5 have constant, but unknown
means, although a more general “universal” cokriging predic-
tor could be considered (Chiles and Del� ner 1999). The opti-
mal (ordinary cokriging) predictor is a linear combination of

all available data,

bZ4s05 D
nX

iD1

‹iZ4si5 C
mX

jD1

—jX4uj 51

where the weights 8—j9 and 8‹i9 are determined by

nX

iD1

‹iCZZ4si1 sj5 C
mX

iD1

—iCXZ4ui1 sj5 C m1

D CZZ4s01 sj51 j D 1121 : : : 1 n1

nX

iD1

‹iCZX4si1 uj5 C
mX

iD1

—iCXX4ui1 uj5 C m2

D CZX4s01 uj 51 j D 1121 : : : 1m1

nX

iD1

‹i
D 11 and

mX

iD1

—i
D 00 (6)

As with ordinary kriging, these equations result from mini-
mizing the PMSE subject to unbiasedness conditions. Here m1

and m2 are Lagrange multipliers from the constrained mini-
mization, CXX4ui1 uj5 D cov4X4ui51 X4uj 55 and CZZ4si1 sj5 D
cov4Z4si51Z4sj55 are the covariance functions of the X and Z
processes (called autocovariance functions), and CZX4si1 uj5 D
cov4Z4si51X4uj55 is the cross-covariance function between
the two processes. (The full details of cokriging and the
prediction standard error for the cokriging predictor can be
found in, e.g., Isaaks and Srivastava 1989 and Wackernagel
1995.) These equations are valid regardless of the support
of the data, but valid inference procedures for the autoco-
variances and cross-covariances that take into account dif-
fering supports are crucial for their use in COSP problems.
When both Z and X are of point support, there are many
approaches to estimation and modeling of the autocovariance
and cross-covariance functions, including coregionalization
models ( Isaaks and Srivastava 1989; Wackernagel 1995), the
use of “pseudo” or variance-based cross-variograms (Clark,
Basinger, and Harper 1989; Myers 1991; Papritz, Kunsch, and
Webster 1993; Cressie and Wikle 1998), Bayesian hierarchi-
cal models (Le and Zidek 1992), and moving average rep-
resentations (Ver Hoef and Barry 1998). Once a consistent
model for the point covariance functions is developed, block
cokriging [i.e., prediction of Z4B5 from point data Z4s5 and
X4s5] can be done by replacing the cross-covariances in (6)
by their block-averaged counterparts (Myers 1984). Thus co-
kriging can be used for as a solution to both the point-point
and point-block COSPs, although there is still great debate
on how best to de� ne, estimate, and model the second-order
cross-variable relationships.

An interesting solution to the area-to-point COSP (the eco-
logical inference problem) can be considered as a special
case of cokriging in which data are available on only one of
the spatial variables. This solution in the context of predic-
tion from binomial data was considered by McNeill (1991)
in mapping the spatial distribution of bird species and then
by Oliver, Lajaunie, Webster, Muir, and Mann (1993) and
Webster, Oliver, Muir, and Mann (1994) in predicting the risk
of a rare disease. In this context, let 8� 4s5 2 s 2 D <29
denote a latent risk process, and assume that this process has
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mean Œ� , and covariance function C� � 4¢5. Further assume
that, conditional on this process, the observed frequencies,
R4ui5, associated with an area centered at location ui1 are
independent binomial random variables with means � 4ui5 and
variances � 44ui541ƒ� 4ui55=n4ui5, where n4ui5 is the popula-
tion in the ith area. In the cokriging context discussed earlier,
with only one variable observed, the cokriging predictor and
equations reduce to

O� 4s05 D
nX

iD1

‹iR4ui51

where the weights are obtained from

nX

jD1

‹jCRR4ui1 uj5 C m D C� R4s01 ui51 i D 11 : : : 1 n

and

nX

iD1

‹i
D 10

To use these equations, the cross-covariance function
between the risk process and the observed frequencies must
be inferred from the data. Given the model assumptions, stan-
dard conditioning arguments can be used to show that (see,
e.g., McNeill 1991)

C� R4s01 ui5 D C� � 4s01 ui5 (7)

and

CRR4ui1 uj5 D 1 ƒ
„ij

n4ui5
C� � 4ui1 uj5 C

„ij

n4ui5
Œ� 41ƒ Œ� 51

where „ij
D 1 when i D j and 0 otherwise. These equations

relate the moments of the data process R to those of the latent
process � , allowing estimation and inference on � from the
frequency data. However, assuming that the covariance func-
tion of the aggregated data process is the same as that of
the underlying risk process assumed to be of point support
may not be realistic, particularly for physical processes whose
mechanisms vary with scale.

3.3 Nonlinear Geostatistics and the Change of
Support Problem

In many cases, E4Z4B5—Z5 is not linear in the data Z;
in others, prediction of a nonlinear function of Z4B5 is of
interest. These problems require more information about the
conditional distribution of Z4B5 given the data, FB4z—Z5 D
P4Z4B5 µ z—Z5, than that used for linear prediction. More-
over, in many cases, such as mining and environmental reme-
diation, the quantity Pr4Z4B5 > z—Z5 has meaning in its own
right (e.g., proportion of high-grade blocks available in mining
evaluation or the risk of contamination in a volume of soil).
Nonlinear geostatistics offers solutions to COSPs that arise in
this context.

3.3.1 The Multi-Gaussian Approach. The multi-Gaussian
approach (Verly 1983) to nonlinear prediction in the point-to-
block COSP assumes that available point data Z4s151 : : : 1Z4sn5
can be transformed to Gaussian variables, 8Y 4s59, by Z4s5 D
”4Y 4s55. The block B is discretized into points 8u0

j1 j D
11 : : : 1N 9, and Z4B5 is approximated as

Z4B5
1
N

NX

jD1

Z4u0
j50 (8)

Then

FB4z—Z5 P

³
1
N

NX

jD1

Z4u0
j5 < z—Z4s151 Z4s251 : : : Z4sn5

´

D P

³
NX

jD1

”4Y 4u0
j55 < Nz—Y 4s151 Y 4s251 : : : Y 4sn5

´
0

This probability is estimated through simulation. The vector
Y4u5 D 4Y 4u151 0 0 0 Y 4uN 550, is simulated from the conditional
distribution of Y4u5—Y4s5. Because Y is Gaussian, this condi-
tional distribution can be obtained by kriging, and simulation
is straightforward. Then FB4z—Z5 is estimated as the propor-
tion of vectors satisfying

PN
jD1 ”4Y 4u0

j55 < Nz.
If instead of point support data, data Z4A151 : : : Z4An5,

—Ai
— < —B—, are available, then this approach can still be

used provided that an approximation similar to that of (8)
remains valid. More general COSP models based on the multi-
Gaussian approximation may be possible by building models
from data based on point support as described in Section 3.1,
or by using geostatistical simulation approaches similar to
those described in the next section (Goovaerts 1997).

3.3.2 The Use of Indicator Data. When both the avail-
able data and the value to be predicted have point support, the
quantity of interest is Fs0

4z—Z5 D P4Z4s05 µ z—Z5. This distri-
bution can be estimated by kriging the indicator I4Z4s05 µ z5

from indicator data I4Z4s15 µ z51 0 0 0 1 I4Z4sn5 µ z5 (Journel
1983), where

I4Z4s5 µ z5 D
(

1 if Z4s5 µ z

0 otherwise0

Indicator kriging gives the optimal predictor, E4I4Z4s05 <
z5—Z5, which for indicator data is an estimate of Fs0

4z—Z5 D
P4Z4s05 < z—Z5. Because some information is lost by using
indicator functions, indicator cokriging (Journel 1983) that
uses k sets of indicators corresponding to various threshold
levels, zk , has been suggested as a better alternative.

For nonlinear prediction in the point-to-block COSP, it is
tempting to use block kriging, described in Section 3.1, with
the indicator data. However, this will yield a predictor of

I ü 4B5 D 1
—B—

Z

B

I4Z4s5 µ z5ds1

which is the proportion of B consisting of points where Z4s5
is at or below z. This quantity is clearly not the same as

I4B5 D
(

1 if Z4B5 µ z

0 otherwise1
(9)
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which would provide an estimate of P4Z4B5 µ z—Z5, the prob-
ability that the average value of Z4¢5 is at or below z. This
latter quantity is the one of interest in COSPs. The problem
arises with any nonlinear function of Z4s5, because the mean
of block support data will not be the same as the block aver-
age of the point support data. This is also true in the more
general COSP based on data with supports Ai that differ from
support B.

Goovaerts (1997) suggested a solution to nonlinear block
prediction based on simulation. The block is discretized, and
data Z4u0

j5 are simulated at each discretized node. Simulated
block values are then obtained via (8). Based on these simu-
lated block values, block indicator values are constructed using
(9). P4Z4B5 µ z—Z5 is then estimated as the average of these
block indicator values. Goovaerts (1997) recommended lower
and upper triangular decomposition for the simulation of the
Z values, but any conditional simulation technique (i.e., one
that forces the realizations to honor the available data) could
be used.

3.3.3 Isofactorial Models. Isofactorial models were � rst
adapted to COSPs by Matheron (1984), who used them to
build a joint distributions (point-block, block-block) from
speci� ed marginals. They have the general form

Gi1 j4dzi1dzj5 D
X̂

mD0

Tm4i1 j5�m4zi5�m4zj5G4dzi5G4dzj51

where the orthonormal polynomials, �m4z5, have nice statis-
tical properties: �04z5 D 11E4�m4Zi55 D 01var4�m4Zi55 D 1,
and cov4�m4Zi551�p4Zj55 D 0. The coef� cients Tm4i1 j5 are
the covariances of the polynomials of the same order, that is,
Tm4i1 j5 D cov4�m4Zi51�m4Zj55. The exact form of the poly-
nomials is determined by the marginal distribution, G4dz5. For
example, if G4dz5 is Gaussian, then Hermite polynomials are
used because, for the Gaussian distribution, these are known
to have the desired orthonormal properties.

The advantage of using isofactorial models in the prediction
of nonlinear functions is the orthogonality of the polynomi-
als. This property allows prediction of each polynomial via a
separate kriging system and greatly reduces the computations
required. In kriging the polynomials, the covariances needed
for the kriging equations are given by the Tm4i1 j5. These are
inferred from assumptions pertaining to the bivariate distribu-
tion of the pairs 4Z4si51Z4sj55. For example, if 4Z4si51 Z4sj55

is bivariate Gaussian with correlation function �4˜iƒ j˜5, then
Tm4i1 j5 D 6�4˜i ƒ j˜57m.

As an example, suppose that all pairs 4Z4s51 Z4u55 are
bivariate normal and we want to predict I4B5 in (9). This func-
tion can be expanded in terms of Hermite polynomials (see,
e.g., Rivoirard 1994) as

I4B5 D G4z5 C
X̂

mD1

1p
m

Hmƒ14z5g4z5Hm4Z4B551

where G is the cumulative Gaussian distribution function and
g is the Gaussian density. Then the disjunctive kriging predic-
tor of I4B5 is obtained by replacing each Hm4Z4B55 with its

predictor obtained by kriging based on

nX

iD1

‹mi6cov4Z4si51 Z4sj557
m

D 6cov4Z4si51Z4B557m1 j D 11 : : : n0 (10)

However, to actually implement the kriging, valid mod-
els for Tm4i1 j5 (point-to-point), Tm4B1 j5 (point-to-block), and
Tm4B1B5 (block-to-block), needed as the covariances in (10)
and for the prediction standard errors, must be constructed
simultaneously and any parameters estimated from the data.
This has been done only in special cases, such as, using what
is called the discrete Gaussian model. Details for this model
and other isofactorial models [e.g., when Y 4s5 has a gamma
distribution] have been given by Rivoirard (1994) and Chiles
and Del� ner (1999).

As an alternative, Cressie (1993a) proposed constrained
kriging, which uses f4‹0Z5 to predict f4Z4B55. The weights
are chosen to minimize the PMSE of ‹0Z subject to both
an unbiasedness constraint as in ordinary kriging and also
to a variance constraint, var4‹0Z5 D var4Z4B55. The function
f 4‹0Z5 is easily obtained from the data (see Cressie 1993a
for the equations and distributional properties) with no more
assumptions than those made for ordinary block kriging. The
extra constraint forces this predictor to be more variable, com-
pensating for the smoothness of the ordinary kriging predic-
tor. Simulations of Cressie (1993a) and Aldworth and Cressie
(1999) indicate that accurate nonlinear predictions of aggre-
gate data can be made using this approach. An extension
of this, covariance-matching constrained kriging, has been
shown to have even better PMSE properties (Aldworth and
Cressie 2002).

4. MULTISCALE MODELING

Prediction across scales is key to understanding many com-
plex physical and biological processes (e.g., Daley 1992; May
1994; Turner, Dale, and Gardner 1989; Levin 1992; Bissonette
1997). Studies at several scales are often needed to achieve
this understanding, and attention has recently focused on sta-
tistical methods for such multiscale processes.

4.1 Use Scale-Independent Statistics

Perhaps King (1997) best emphasized the need for scale-
independent statistics when, with regard to the MAUP, he
wrote

Unfortunately, the statistics used to study these issues have not been
aggregation-invariant (or “scale-invariant”). If a researcher wishes to have
statistics that are invariant to the areal units chosen, then there is no reason
to choose correlation coef� cients, which depend heavily on the de� nition of
available areal units. Solving the MAUP only requires developing statistics
that are invariant to the level of aggregation (p. 250).

Tobler (1989) had this same idea when he suggested that meth-
ods of spatial analysis should be independent of the spatial
coordinates used; the problem is not in the choice of units,
but with the choice of models and methods used in the analy-
sis. Thus, instead of the Pearson correlation coef� cient, Tobler
(1989) recommended using the cross-coherence function (the
spectral equivalent of the cross-variogram). Equally as impor-
tant is the choice of model on which to base inference.
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Both Tobler (1989) and Amrhein and Flowerdew (1992)
described models that can be “upscaled” but show no aggre-
gation effects.

Tobler (1989) further suggested choosing models whose
parameters change in a predictable manner across scales to
solve the aggregation aspect of the MAUP. This is similar
to the recommendations made by Cressie (1996, 1998) and
to the ideas of Fotheringham (1989), who suggested focus-
ing on rates of change across scales and using the fractal
dimension as a scale-independent measure of a spatial rela-
tionship. Fractals have been effective multiscale models in sev-
eral disciplines (e.g., Palmer 1988; Milne 1988; Sugihara and
May 1990; Emerson, Lam, and Quattrochi 1999). Other sta-
tistical methods with a similar goal include spectral analysis
(Renshaw and Ford 1984; Nielsen, Wendroth, and Parlange
1995), entropy decomposition analysis (Theil 1972; Batty
1976; Phipps 1991; Johnson and Patil 1998), nested analysis
of variance (Greig-Smith 1952; Moellering and Tobler 1972;
Oliver and Webster 1986; Bellehumeur and Legendre 1998;
Ver Hoef and Cressie 1993), local image variation graphs in
remote sensing (Woodcock and Strahler 1987), geostatistical
methods (Legendre and Fortin 1989; Bell et al.1993; Ver Hoef,
Cressie, and Glenn-Lewin 1993; Goovaerts 1998), and Markov
transition models (Patil and Taillie 1999).

4.2 Multiscale Spatial Tree Models

To describe spatial processes operating at multiple res-
olutions, Basseville et al. (1992) and Chou, Willsky, and
Nikoukah (1994) developed a scale-recursive algorithm based
on a multilevel tree. Each level of the tree corresponds to a
different spatial scale, with the � nest scale at the lowest level
of the tree. Let s represent any node on the tree, let s0 denote
the node at the coarsest scale (the “root node”) of the tree,
and let T denote the collection of all nodes of the tree. Nodes
at the very � nest scale are referred to as the leaves of the tree,
and a node at one scale that is related to nodes at the next
� nest scale via the branches of the tree is called a parent node,
denoted by ps. A simple tree structure is shown in Figure 1.

Figure 1. A Tree Structure for Multiscale Processes.

The goal is to predict an unobservable spatial process
8X4s51 s 2 T9, called the state process, from a noisy measure-
ment process 8Z4s51 s 2 T9, from which data are observed at
some nodes of the tree. The measurement process is assumed
to be linearly related to the state process via the measurement
equation

Z4s5 D K4s5X4s5 C Å4s51 (11)

where Z4s5 is a n x 1 vector of measurements at node s; X4s5

is a m x 1, zero-mean state vector that we would like to pre-
dict; Å4s5 is a white noise process independent of X4s5, with
known covariance matrix R4s5 that re� ects measurement error
in the observations; and K4s5 is an n x m deterministic selec-
tion matrix that relates the measurements to the state vector.
The selection matrix speci� es the components of the state vec-
tor that are measured and how each of these corresponds to
the measurements at node s.

The state vector is not observable, but it is assumed to be
related to its parent through the state equation

X4s5 D ê4s5X4ps5 C Ç4s51 (12)

where Ç4s5 is a white noise process with covariance matrix
Q4s5 that is independent of both Å4s5 and X4ps5. In addition
to this “downtree” model, a corresponding “uptree” model can
be derived. Assuming that X4s5 follows a multivariate Gauss-
ian distribution and using properties of conditional Gauss-
ian distributions together with (12) gives E4X4ps5—X4s55 D
Pps

ê04s5Pƒ1
s X4s5, where Ps is the covariance matrix of X4s5.

Then the uptree model can be written as

X4ps5 D F4s5X4s5 C ×4s51 (13)

where F 4s5 D Pps
ê04s5Pƒ1

s 1×4s5 D X4ps5ƒPps
ê04s5Pƒ1

s X4s5,
and W 4s5 ² E4×4s5×04s55 D Pps

4I ƒ ê04s5Pƒ1
s ê4s5Pps

5. If
P0, the prior covariance of X4s05 at the root node, is spec-
i� ed, then, from (12), Ps can be calculated recursively as
Ps

D ê4s5Pps
ê04s5 C Q4s5.

Based on this model, Chou et al. (1994) generalized the
Kalman � lter to produce optimal predictions of the state vector
in two steps. The � rst step, called an uptree � ltering step, pro-
ceeds upward from the leaves of the tree to the root, succes-
sively computing the optimal predictor of X4s5 and an associ-
ated PMSE based on the data at this node and at all nodes on
the subtree below s. An additional Kalman � ltering algorithm
is also used in a “merge step” that combines predictions at
the offspring nodes into a single prediction for use in updat-
ing prior information for the next prediction. The second step,
called a downtree smoothing step, proceeds downward from
the root of the tree, giving the optimal predictor of the state
vector and an associated PMSE based on all available data. In
this way, the algorithm can use data at multiple spatial scales.
The algorithm is computationally ef� cient because it involves
only local calculations by making the assumption of condi-
tional independence: Conditional on any node of the tree, each
of the subtrees connected to it is assumed to be condition-
ally independent. Thus computations involving the nodes of
each subtree can be processed separately, allowing the order
of computations to be proportional to the number of nodes at
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the � nest scale of the tree. The details of this computational
algorithm and potential generalizations have been described
in detail by Chou et al. (1994) and Fieguth, Karl, Willsky,
and Wunsch (1995), and a Bayesian derivation was given by
Huang and Cressie (2000).

To use the foregoing models in practical situations, one
must specify the order of the model (the dimension of X4s5)
and the system matrices K4s51 ê4s51 Q4s5, and R4s5. In many
practical applications, simple choices for these matrices can
lead to � exible and powerful models. For example, Fieguth
et al. (1995) considered predicting ocean surface height at a
� ne resolution from ocean surface measurements at a much
coarser resolution. In this case, X4s5 is a scalar representing
ocean surface height at node s, and the selection matrix is
an indicator function that takes the value 1 if the state vec-
tor was measured at a particular node. The matrices ê4s5
and Q4s5, now scalars in this example, were chosen from a
class of spectral scaling rules commonly used to describe the
ocean surface, and R4s5 re� ected the known accuracy of the
satellite platform used to collect the measurements. In another
application, Gabrosek, Huang, and Cressie (1999) analyzed
satellite data collected using NASA’s total ozone mapping
spectrometer associated with � ve different resolutions. In this
analysis, Gabrosek et al. 1999 speci� ed var(…4s55 D ‘ 2

… and
var(‡4s55 D ‘ 2

k for k D 11 : : : 1 5 levels and then used maxi-
mum likelihood to estimate these variance components.

The transition matrix, ê4s5, plays an important role in
relating the process at different scales, and the state equation
implicitly relates the covariance of the variable at one scale to
that at another through cov(X4s51 X4bs55 D cov4ê4s5X4bs5 C
Ç4s51 X4bs55 D ê4s5P4bs5 C Q4s5. In view of this, Fieguth et
al. (1995) modeled Q(s) as a function that decreases geo-
metrically with scale, and many such models are conceiv-
able. Huang, Cressie, and Gabrosek (2000) developed hetero-
geneous tree models that also allow the variance of the spatial
tree process to change with scale. The basic algorithm used for
prediction in multiscale tree models provides implicit forms
for the covariance of X4s5 at any particular scale and also
cross-covariances between X4s5 at different scales. However,
because two neighboring points may have different parents,
the correlation function of the state process on the � nest scales
may show unrealistic “blocky” artifacts (Basseville et al. 1992;
Huang and Cressie 2000) that are re� ected in the predicted
surfaces. To alleviate this problem, Huang and Cressie (2000)
extended the multiscale spatial tree models to more general
graphical models, such as graphical Markov models, and also
developed a generalized Kalman � lter for these models. Mod-
els that do not satisfy the “pycnophylactic” property of Tobler
(1979), which forces the average of all the offspring measure-
ments of a parent node to equal their parent measurement, can
also result in inconsistencies. Huang et al. (2000) extended the
work of Huang and Cressie (2000) to incorporate such “mass
balance” properties.

State-space models and their multilevel tree speci� cation
in particular combine model � exibility with the fast compu-
tational algorithms needed for modeling complex, high-order
processes. However, they do not yet explicity account for
changes in support that occur with changes in resolution.
Although the data may not be explicitly aggregated, the res-
olution of the images associates each pixel with an area on

the ground, and this area becomes larger and larger as the
resolution of the image decreases. Thus the data observed at
each scale, and their relationship to data at different scales,
re� ect aggregate properties of the support over which they are
de� ned. Future research in this area will likely focus on the
development of explicit models for these change-of-support
relationships.

4.3 Bayesian Hierarchical Models for
Multiscale Processes

The conditional speci� cation of spatial tree models lends
itself easily to a Bayesian approach to multiscale modeling.
Instead of the tree structure that is speci� ed node by node, let
Z be a general n� 1 spatial measurement vector and let X be
the m� 1 state vector. Corresponding to the state-space model
described earlier, let the conditional distribution of Z given X
be 6Z — X7 Nn4KX1R5, with X Nm4m1Q5, where R1 m and
Q are known but general and the matrix K is a speci� ed n� m
matrix that relates the measurement process to the state vector.
Then the posterior distribution of X1 f 4X — Z5, is Nm4m ü 1Q ü 5

with

m ü D 4Qƒ1 C K 0Rƒ1K5ƒ14K 0Rƒ1Zƒ Qƒ1m5 (14)

and

Q ü D 4Qƒ1 C K 0Rƒ1K5ƒ11 (15)

and so m ü D E4X—Z5 is the optimal (minimum PMSE) pre-
dictor of X. This is just the kriging predictor of X from noisy
measurements Z used in Kalman � ltering (see, e.g., Brown
1983; Meinhold and Singpurwalla 1983; Cressie 1993b) and
is a basic model for data assimilation in atmospheric science
that unites both observational data and results from determin-
istic weather forecasting models (Daley 1991).

Relaxing the assumptions in this basic model makes the
model more realistic, but also more complex. For example,
assume that R D ‘ 2

… D, where D is known but now ‘ 2
… is

unknown. (Often D is taken to be an identity matrix, re� ect-
ing a situation in which the measurement errors are uncorre-
lated, but their variance in unknown.) A Bayesian approach is
useful for estimating ‘ 2

… and accounting for its uncertainty in
the prediction of X. It is often assumed that ‘ 2

… IG4a…1 b…5,
where a… and b… are speci� ed constants such that ‘ ƒ2

… has
a gamma(a…/2, b…/2) distribution (see, e.g., O’Hagan 1994)
and the prior distributions on X and ‘ 2 are independent. (A
similar development, considered in Kitanidis 1986, Handcock
Stein 1993, and Gaudard, Karson, Linder, and Sinha 1999,
assumed a prior for X that also depends on ‘ 2, a situation
not realistic here. The analytical derivations and computa-
tional details included in their work may be useful in devel-
oping other multiscale models and in other spatial applica-
tions.) With this model, f 4X — Z5, and f4‘ 2

…
— Z5 required

for inference on X and ‘ 2
… are more dif� cult to obtain, but

Gibbs sampling is straightforward. The full conditional for
X1 f 4X — ‘ 2

… 1 Z5, is the same as that given earlier [Gaussian
with parameters in (14) and (15)] with R D ‘ 2

… D, and the
full conditional distribution for ‘ 2

… is IG4a…
C s1 b…

C n5, with
s D 4Z ƒ KX50Dƒ14Z ƒ KX5. This model can be extended to
allow a generalized linear model for the measurement process
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(Diggle, Tawn, and Moyeed 1998). Another useful extension
is to model the covariance matrix of X as a function of spa-
tial dependence parameters, for example, cov4X4si51 X4sj55 D
Q4i1 j5 D exp4ƒ�1

˜si
ƒ sj

˜�25, with �1 > 0, and 0 < �2 < 2.
Other covariance functions could be used, (see, e.g., Hand-
cock and Stein 1993; Gaudard et al. 1999). The parameters
�1 and �2 can also be given prior speci� cations. Independent
uniform priors could be speci� ed (e.g., Diggle et al. 1998), or
instead a truncated Gaussian prior could be used for �1 (e.g.,
Royle, Berliner, Wikle, and Milliff 1997). The full conditional
distributions for these parameters are usually not tractable,
and so another algorithm (e.g., Metropolis–Hastings) must be
used to sample from these distributions. In many applications,
X describes a physical process, and for such cases it may be
useful to model m D HÂ. This second stage of the hierar-
chy, X Nm4HÂ1 Q4Á55, has been called the process model
(Berliner, Royle, Wikle, and Milliff 1999), with the goal of
this modeling step being a description of the true, unobserved
process through physically motivated conditional distributions.
Royle et al. (1997) and Berliner et al. (1999) used this stage
to relate a surface wind � eld 4X5 to the gradient of a pres-
sure � eld 4Â5. The components of the matrix H were based
on differential equations that describe atmospheric dynamics
involving pressures and winds. Wikle, Berliner, and Cressie
(1998) and Wikle, Milliff, Nychka, and Berliner (2001) used
a similar formulation to incorporate temporal variation as well
as physical process constraints in describing the dynamics of
a tropical wind process. A prior distribution for Â may also
be speci� ed to re� ect information and uncertainty about this
parameter.

When the measured locations are different from the state
locations, K maps the measurements to the nearest state loca-
tions (Royle et al. 1997). Thus, if both Z and X have point
support, then the aforementioned formulation is a solution
to the point-point COSP. Wikle et al. (2001) showed how
this model can be extended to combine spatial data at dif-
ferent scales. In their development of a space-time model of
tropical ocean surface winds, high-resolution, satellite-derived
wind estimates were observed at grid locations Ai , and lower-
resolution wind data provided by major weather centers were
observed at grid locations Ck. Prediction was desired at grid
locations Bj , with —A— < —B— < —C—. For the conditional mea-
surement equations, Wikle et al. (2001) assumed

£
ZA

— KA1 X1‘ 2
A

¤
N 4KAX1‘ 2

AI5

and £
ZC

— KC 1X1‘ 2
C

¤
N 4KCX1‘ 2

CI50

Because the data ZA were at a � ner resolution than the desired
prediction grid, KA was taken to be an incidence matrix that
mapped the conditional mean of these observations to the near-
est prediction grid location. The data ZC were at a coarser
resolution than the desired prediction grid, so KC operated by
assuming that the measured data were smoothed versions of
the true process. Each observed point was a weighted average
of the nine closest prediction points within a distance D. The
variances of the measurement errors were allowed to differ,
re� ecting the different instrumentations used for measurement.

Additional hierarchical levels, similar to those discussed ear-
lier, were used to describe the dynamics (both temporal and
mechanistic) of the wind processes.

Thus, one general Bayesian hierarchical model for a multi-
scale process has the following basic form:

£
ZA

— X1‘ 2
A

¤
N 4KAX1‘ 2

ADA51

DA known or the identity matrix3
£
ZC

— X1‘ 2
C

¤
N 4KCX1‘ 2

CDC51

DC known or the identity matrix3
£
X — Â1 Á

¤
N 4HÂ1 Q4Á551 Q4i1 j5

D exp4ƒ�1˜si
ƒ sj

˜�2 51 �1 > 010 < �2 < 23

Â N 4Â01èÂ53

‘ 2
A IG4aA1 bA53

‘ 2
C IG4aC 1 bC53

�1 U 4a11 b153

and
�2 U 4a21 b251

where Â01 èÂ1 aA1 bA1 aC 1 bC 1 a11 b11 a2, and b2 are speci� ed.
In actual applications, additional hierarchical structures may
be used, different covariance models and prior distributions
may be chosen, and some simpli� cations may be required
for implementation. [See Royle et al. 1997; Diggle et al.
1998; Wikle et al. 1998; Wikle et al. 2001 for applications
and details on choices for the hyperparameters and details of
the Markov chain Monte Carlo (MCMC) sampling used for
inference.]

An advantage of this type of speci� cation is that the
joint distribution of Z and X (and, in particular, their cross-
covariance matrix) does not have to be speci� ed and mod-
eled. Nevertheless, assumptions about the covariance between
X and Z are being made. Consider just the � rst two
stages of the models described earlier, Z—X N 4KX1‘ 2I5

and X N 4HÂ1 Q5. If K is an incidence matrix, then
the implicit assumptions are that cov4Z4si51Z4sj55 D ‘ 2 C
cov4X4uk51X4ul55, where 4uk1ul5 is the node closest to
4si1 sj5, and cov4Z4s51 X4u55 D cov4X4s51X4u55. Although
more levels in the hierarchy are usually considered, and some
of these may also allow spatial dependence, assumptions of
diagonal covariances and sparse mapping matrices may result
in simple approximations to potentially complex multiscale
relationships. As with the multiscale tree models described
earlier, these hierarchical spatial models do not account for
changes in support that result from changes in resolution. It
may be possible to formulate COSP models by relating both
processes to an underlying process with point support, …4s5.
Then, if Z is measured with support A and X is measured
with support B,

6Z — X1‘ 27 N 4WAX1èA
…

C‘ 2
AI 5

and

X N 4Ì4B51èB
… 5
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with èS
… having 4i1 j5th element

Z

Si

Z

Sj

C…4u1 v5du dv=—Si
——Sj

—

and WA having 4i1 j5th element —Ai
\Bj

—=—Ai
— to ensure proper

relationships between the means of …4s51Z4Ai5, and X4Bj5.
Suppose instead that speci� cation of the joint distribution

is not problematic. Assume that Z4s5 is a Gaussian process
and that Zs

D 4Z4s151 0 0 0 1Z4sn550 has mean Ìs and covariance
matrix èss . Then

µ
Zs

ZB

¶
N

³µ
Ìs 4Â5
ÌB 4Â5

¶
1

µ
èss4Á5 èsB4Á5
èBs4Á5 èBB4Á5

¶´
1

where ÌB and the elements of èsB4Á51èBs4Á5, and èBB4Á5

are obtained by integrating the analogous moments of the
point-support process as described in Section 3.1. Using a
Bayesian analysis, spatial prediction requires either f 4Zs0

—Zs5

for the prediction of points from points, f4ZB
—Zs5 for the pre-

diction of blocks from points, and f 4ZB0
—ZB5 for the predic-

tion of blocks from block data. The analytical form of these
distributions is easily obtained from the properties of the mul-
tivariate Gaussian distribution. Placing prior distributions on
Â and Á and then using a MCMC sampling method (e.g.,
Gibbs sampling) gives Âg and Ág , which effectively allows
all of these predictive distributions to be completely speci� ed.
Gelfand et al. (2001) used Gibbs and other MCMC sampling
methods to estimate Â and � and obtain block-block, block-
point, and point-block conditional distributions required for
solutions to the corresponding COSPs.

5. MAP OVERLAY OPERATIONS AND THE
CHANGE OF SUPPORT PROBLEM

Comparing data from different sources, studying the change
in a variable over time, or evaluating the relationship between
two or more variables are perplexing problems if the areal
units are not the same for all variables during each collection
period. The units for which data exist are often called source
units, and those for which data are desired are called target
units (Markoff and Shapiro 1973). The process of superim-
posing source and target units has become known in the geo-
graphic literature as the polygon overlay problem.

5.1 Probabilistic Potential Mapping in a
Geographical Information System

Consider an areal event of interest A (e.g., a mineral
deposit or a chemical spill) occurring within a domain S and
associated explanatory maps (“evidential themes” in GIS ter-
minology) Ei4j5, with i indexing different variables and j

indexing discrete class states within each map. The goal is to
predict P4A—Ei4j55. Although both the source units and the tar-
get units are pixels within S, A is a polygonal attribute, so that
linking the themes to A by pixel (as logistic regression would
require) is not easily accomplished. A simple approach that
can be used within a GIS was proposed by Bonham-Carter,
Agterberg, and Wright (1988) and is implemented by the pro-
gram Arc-WofE in ArcView GIS (Raines, Bonham-Carter, and
Kemp 2000).

This approach determines a weight of evidence for each
class value of each map, Wi4j5, that re� ects the degree
of spatial association between A and Ei4j5. The weights
are calculated from logarithms of conditional probabili-
ties, P4Ei4j5—A5=P4Ei4j55, that are related to P4A—Ei4j55 by
Bayes’s theorem and assumptions of conditional independence
of Ei4j5 given A. The probabilities comprising the weights
are estimated from area measurements expressed as unit cell
counts. Given the weights of evidence and a prior estimate
of P4A5, a posterior probability map re� ecting the probabil-
ity that a unit cell contains an event A given all explanatory
information can be drawn. Uncertainties associated with vari-
ability in the estimated weights and missing data are re� ected
in the uncertainties of the posterior probabilities and also can
be mapped. Additional details and examples have been given
by Bonham-Carter (1994). Chung and Fabbri (1999) compared
several approaches to estimating the posterior probabilities
including crude estimation using observed relative frequencies
from historical data, Bayes estimation based on the assump-
tion of conditional independence, and a general multivari-
ate linear regression model. In the regression, the conditional
probability of the event given the explanatory variables (based
on discretizing A into pixels) was regressed on the bivariate
conditional probabilities inferred from the historical data. The
regression analysis, with and without expert opinion, tended
to perform better than the other methods in the validation case
studies considered by Chung and Fabbri (1999). It is inter-
esting that Chung and Fabbri (1999) seemed to believe that
avoiding the assumption of conditional independence was a
positive attribute of this regression model. Although the mod-
els advocated by Bonham-Carter et al. (1988) and Chung and
Fabbri (1999) may seem rather simple statistically, they are
some of the � rst real attempts at probabilistic modeling within
an interactive GIS framework.

5.2 Pixel Aggregation and Areal Weighting

When areal source units are nested within areal target
units, three methods of aggregating spatial source data to
produce estimates on the target units are averaging, central-
pixel resampling, and median. The averaging method assigns
the average value of the original units to the newly aggre-
gated unit. The central-pixel resampling method uses the value
associated with the central pixel of the aggregated unit. The
median value of the original units is associated with the aggre-
gated unit for the median method. Based on a simulation
study using various underlying spatial correlation structures
and Gaussian errors, Bian and Butler (1999) concluded that
the averaging method results in aggregated data that have a
more predictable statistical and spatial behavior than the other
two methods. The median method was shown to have simi-
lar properties, but the central-pixel method was the least pre-
dictable. Bian and Butler (1999) also noted that aggregat-
ing within the range of spatial autocorrelation can reduce the
errors induced by averaging dissimilar units.

Often the source and target units overlap. In this case, the
value for a target unit is often taken to be a weighted aver-
age of the values for the source units that intersect it, a pro-
cess called areal interpolation (Goodchild and Lam 1980).
It is based on a familiar solution to the point-to-area COSP
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proposed by Thiessen (1911). Thiessen polygons are still fre-
quently used for interpolation problems in geology and hydrol-
ogy, particularly in very small sample cases where kriging
cannot be used. Two primary forms of areal interpolation have
been used: polygon overlay methods and smoothing meth-
ods. In polygon overlay methods, the weights are equal to the
proportion of the target unit comprised by each source unit
(Markoff and Shapiro 1973; Goodchild and Lam 1980). This
is often referred to as proportional allocation or areal weight-
ing. The implicit assumption is that the variable of interest is
evenly distributed in the source unit.

5.3 Spatial Smoothing Methods

With these methods, a smooth surface is � tted to data for
the source units and used to interpolate values at the nodes of a
� ne grid. The interpolated values are then summed or averaged
over the target units to obtain areal estimates for these units.
Let Z4A151 : : : 1Z4An5 denote the aeral data (counts or totals)
observed in regions Ai D, and suppose that there exists
an underlying smooth density, ‹4s51 s D 4x1 y5 D1‹4s5 ¶ 0.
Tobler (1979) suggested choosing ‹4x1 y5 to minimize

Z Z "³
¡‹

¡x

2́

C
³

¡‹

¡y

2́
#

dx dy

subject to the constraints ‹4s5 ¶ 0 and
Z

Ai

‹4s5ds D —A—0 (16)

Tobler (1979) called the constraint in (16) the pycnophylactic
property, which ensures that the density process aggregates to
the observed data for each region. The solution to this partial
differential equation requires speci� cation of boundary condi-
tions. These will affect the smoothness properties of the sur-
face, particularly near the edges of the domain. Tobler (1979)
used � nite difference methods to solve this constrained mini-
mization and suggested forcing either the surface or its gradi-
ent to be 0 at the boundary of the domain. Dyn, Wahba, and
Wong (1979) suggested using a different type of spline that
allows both the surface and its gradient on the boundary to be
determined by the data.

Brillinger (1990) considered a different optimization crite-
rion based on a locally weighted analysis with weights,

wi4x1 y5 D 1=—Ai
—
Z Z

Ai

W4x ƒ u1y ƒ v5du dv1

where W 4¢5 is a speci� ed kernel function. Given the weight
function, a locally weighted estimate of the underlying den-
sity was obtained by maximizing the weighted log-likelihood
of the data. For areal data, taking Z4Ai5 Poisson4Ni‹5, a
locally weighted estimate of ‹ at 4x1 y5 is

O‹4x1 y5 D
X

i

wi4x1 y5Z4Ai5=Ni

X

i

wi4x1 y50

Brillinger (1990) extended this approach to include explana-
tory covariates (using the common Poisson-lognormal model),
and Brillinger (1994) used the delta method to obtain an esti-
mate of the uncertainty associated with estimated density sur-
face at each point. Similar ideas have been used to estimate

relative risks of the form ‹4s5 D g4s5=f4s5, where g4¢5 is the
intensity of a disease process and f 4¢5 is the population den-
sity (see MRuller, StadtmRuller, and Tabnak 1997).

The weight function in locally weighted smoothing and the
use of the pycnophylactic property in the Laplacian smoother
of Tobler (1979) force the density estimates to account for
the differing supports of the regions Ai . Thus these smooth-
ing methods are one solution to the area-point COSP, although
the locally weighted smoothers may not satisfy the pycnoph-
ylactic property. Averaging the density estimates over different
domains is a solution to the area-area COSP (i.e., the MAUP).
However, both approaches assume independent data and thus
ignore any spatial correlations in the areal data. More sophis-
ticated smoothing algorithms may be able to account for this
correlation, as well as any measurement error in the aeral data.

5.4 Areal Regression Models

Flowerdew and Green (1989, 1992, 1994) used explanatory
variables collected on the target units to improve estimates
from areal interpolation. Consider the simple example given
by Flowerdew and Green (1989) in which the variable of inter-
est is a count variable observed on n source regions. Of inter-
est is an estimate for the count associated with each of several
irregularly shaped target zones, each of which overlaps some
of the source units (Fig. 2). Flowerdew and Green called these
incompatible zones. A binary covariate is measured on each
target zone, and the intensity of the count process is assumed
to be either ‹1 or ‹2, depending on whether the value of the
covariate is 1 or 2. Flowerdew and Green (1989) estimated the
parameters ‹1 and ‹2 by regressing (using Poisson regression)
the count for each source unit, Yi , on A1i and A2i , where A1i

is the area of source unit i overlapped by a target unit with a
covariate value of 1 and A2i is de� ned similarly. The estimated
count for any particular subunit formed by division of a source
unit by the boundaries of the target units was then taken to be
the area of the subunit times the estimated ‹i associated with
the covariate value i for that unit. To force the estimates to
satisfy the pycnophylactic property, the source zone estimates
were scaled by a factor equal to the ratio of the observed value
to the � tted value. Estimated counts for each target unit were
then obtained by adding the estimates of each subunit com-
posing the target unit.

Figure 2. Incompatible Zones. (Adapted from Flowerdew and Green
1989.)
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Flowerdew and Green (1992, 1994) extended their earlier
work to include several different types of response variables
(e.g., binomial, Gaussian) and continuous covariate informa-
tion. The EM algorithm was used to estimate the necessary
parameters, but any software implementing generalized linear
model (GLM) methodology may be adapted to this problem.
In particular, GLM software that allows the areal data to be
spatially correlated (not considered in Flowerdew and Green’s
work) might be used to improve the results. If the estimates
of ‹1 and ‹2 are substantially different and the relationship
between the count variable and the binary covariate is strong,
then this approach will be more accurate than the traditional
polygonal overlay method.

5.5 Bayesian Areal Regression Models

Mugglin and Carlin (1998) extended the work of Flowerdew
and Green using a Bayesian approach to areal interpolation.
They initially considered the case in which an outcome vari-
able of interest, Y , was measured on i D 112 regions (the
source units) and prediction of this variable for region 3 (the
target unit) was desired. A binary covariate, X , was measured
on j subunits, j D 11 : : : Ni , completely nested within both tar-
get and source units (Fig. 3).

To develop a predictor of Y3, Mugglin and Carlin (1998)
assumed the existence of latent count variables de� ned on
each subregion. These were assigned independent Poisson dis-
tributions with parameters ‹1 or ‹2, depending on the value of
the covariate in the subregion. Then the count in each source
zone was considered to be the sum of the counts in the sub-
regions composing the source zone. So, following Flowerdew
and Green (1989),

Yi
— ‹11 ‹2 Poisson4‹1A1i

C ‹2A2i51

where A1i is the area of region i with a covariate value of
1 and A2i is de� ned similarly. But instead of estimating ‹1

and ‹2 using Poisson regression, Mugglin and Carlin (1998)
developed a Bayesian hierarchical model. Vague, independent
gamma421605 prior distributions were chosen for ‹1 and ‹2

so that the prior mean corresponded to the expected average
count of each subregion, and Metropolis updating was used

Figure 3. The Nested Misalignment Problem. (Adapted from Mug-
glin and Carlin 1998.)

to sample from the joint posterior distribution and make infer-
ences on ‹1 and ‹2. Mugglin and Carlin (1998) also recog-
nized that prediction of Y3 (the count in the target zone), not
estimation, was the appropriate inferential tool for this prob-
lem. In obtaining the predictive distribution of Y3 — Y11 Y2, they
showed that the count variables Y3\1 and Y3\2 (delineating the
parts of Y3 that also lie in regions 1 and 2) were both bino-
mial variables that could not exceed Y1 and Y2. This ensured
Tobler’s pycnophylactic property. Additional details and sup-
porting theorems were given by Mugglin and Carlin (1998).
They then applied these ideas to a more general regression
situation based on leukemia counts in Tompkins County, New
York. Disease counts were available at the census tract level,
and prediction of disease counts at the census block group
level was of interest. Demographic factors, including popu-
lation totals, and distance of the block group centroid from
an hazardous waste site, were used as covariates for the pre-
dictions. Mugglin, Carlin, Zhu, and Conlon (1999) extended
these ideas to smoothing models that allow for spatial het-
erogeneity and clustering, and Mugglin, Carlin, and Gelfand
(2000) considered a more general misalignment problem. This
latter work considered two misaligned grids, B and C, that
have different spatial supports. The B cells were the source
units, and a response variable of interest, Yi , was observed
for each Bi . Covariates, Xj , were observed on each target unit
Cj . The misalignment of the B’s and C’s prevents the use
of standard regression methods for inference on Y . To solve
this misalignment problem, Mugglin et al. (2000) developed
a Bayesian hierarchical model by conditioning on latent vari-
ables associated with smaller areas (called atoms) delineated
by the intersection of the two grids. The latent variables were
assumed to have conditionally independent Poisson distribu-
tions, the means of which were taken to be functions of the
areas of each atom and random effects that accounted for grid
cell effects. In addition, a spatial Markov random � eld prior
speci� cation was introduced to model the spatial association
among the Yi’s. This latter extension overcame one of the
main criticisms of the methods described in Sections 5.3 and
5.4. Although the details of the model building and MCMC
implementation are complex, the underlying idea was to build
a model at the atom level, thus producing a common grid
on which X and Y could be related. Mugglin et al. (2000)
illustrated a more general model that included a covariate, W ,
associated with each B cell, and noted that both X and W

could be vectors of covariates and not simply scalars. These
perhaps could be used to account for large-scale spatial non-
stationarity in the Y process. Also, different distributions for
the aggregated count measurements could be used, although
the user would need to make the necessary theoretical deriva-
tions and confront the implementational issues not addressed
by Mugglin et al. (2000).

As noted earlier, the main cause of bias in ecological infer-
ence is the loss of relevant information on the individuals
composing each target and source zone. Flowerdew and Green
(1989) and Mugglin and Carlin (1998) recovered some of this
information by including relevant covariate information avail-
able on some of the source zones. Best, Ickstadt, and Wolpert
(2000) considered a slightly different approach using a marked
point process that directly allowed the use of individual-level
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outcomes (disease cases) and covariate information (e.g., race,
sex) instead of areal data to make the desired individual-level
inferences. They recommended the use of Poisson regression
with an idenity link, as opposed to the traditional logarith-
mic link function, to make the analysis scale independent (i.e.,
the regression parameter is the same for both individual and
areal data) and reduce ecological bias. To solve the prob-
lem of incompatible spatial data (disease prevalence data and
air pollution measurements from monitors), Best et al. (2000)
assigned the case data to the centroid of the postal code of
the home address of the case and estimated the air pollu-
tion concentration at this centroid from point measurements
obtained from air pollution monitors. A Bayesian hierarchical
point process model using the Poisson/gamma model devel-
oped by Wolpert and Ickstadt (1998) was then used to make
inferences about the relationship between disease and pollu-
tion at the postal centroids. This is similar to a solution sug-
gested in Section 3.1, although the approach of Best et al.
(2000) did not account for locational errors in assigning the
cases to the centroids or for uncertainty in the estimated air
pollution measurements.

These models illustrate the power and � exibility of
Bayesian hierarchical models in map overlay problems. How-
ever, their utility comes from several key assumptions that
are largely unveri� able from the data. The creation of latent
variables de� ned on the atoms, together with the prior spec-
i� cations and the sampling methods used for inference with
MCMC methods, effectively amounts to assumed knowledge
of the distributions of both X and Y variables at a common
level of support. As with the multiscale tree models described
in Section 4.2, implicit assumptions are made about the cross-
correlation between the two variables that are dif� cult to ver-
ify. The use of proportional allocation in modeling conditional
means does not account for the shape of the units needed for
complete solutions to COSPs. Future re� nements to existing
solutions to the spatial misalignment problem may be able to
address these issues.

6. DISCUSSION

This article has presented a comprehensive review of sta-
tistical methods for combining incompatible spatial data. The
multidisciplinary history provided conveys the complexity of
the problems encountered in combining disparate spatial data
and the widespread interest in solutions that have been devel-
oping over many decades. This is now an active area of sta-
tistical research, and many powerful and novel methods have
recently been developed.

Although the problems that arise in combining incompati-
ble spatial data have been given many different names, they all
can be considered COSPs. Spatial support is much more than
the area or volume associated with the data; it also includes
the shape and orientation of the spatial units being considered.
The central issue in COSPs is determination of the relation-
ships between data at various scales or levels of aggregation.
A common solution strategy for COSPs is to build a model
from point support data or from data with small areal support,
(even if no observations are taken at this level of support)
and then � nd a way to (optimally) estimate important param-
eters and make valid inference. Of course, it is the latter part

of this paradigm that makes viable solutions so dif� cult, and
some assumptions must be made to obtain any solution. Thus
concern shifts to the validity of these assumptions. Traditional
geostatistical solutions cleanly delineate complex covariance
structures, but then often rely on contrived parametric models
to describe them. A hierarchical speci� cation circumvents this
problem by allowing the scientist to break down a complex
problem into more tractable pieces. Are these pieces really
more tractable, or are they more tractable only because we
are somehow more willing to make simplifying assumptions
conditionally, hoping that the structure induced through the
various hierarchies will be suf� ciently complex to provide a
satisfactory model? Ecologists have adopted the approach of
trying to explain how variables at one scale change as they
go to another scale. Statisticians assume that they have this
knowledge either through the choice of parametric covariance
models or through a hierarchical speci� cation and prior infor-
mation. Much progress has been made on combining incom-
patible spatial data, but the assumptions made when doing so
often ignore the differing supports. Thus these assumptions
are much more than mathematical and computational assump-
tions, and they can (often surreptitiously) result in unusual or
unrealistic cross-scale relationships. Further development of
data-driven diagnostic and validation tools will help assess the
impact and validity of many of these assumptions.

Increasing use of GIS systems makes the COSP relevant
and solutions crucial. Substantial progress has been made in
the development of valid methods for combining incompatible
spatial data, much of it only recently. Hopefully, these methods
will be quickly incorporated into an interactive GIS framework
that will help ensure that valid statistical methods are used for
spatial analysis.

[Received September 2000. Revised August 2001.]
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