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Fig. 5. The contributions to the L3 component of torque, in units of 103 N/m, calculated from the flow model shown
in Figure 2b interacting with the topography from the model of Gudmundsson and Clayton [1992] for two different
degrees of truncation. The upper panel is for topography expanded through degree and order 4 (shown in the upper
panel of Figure 3). The lower panel is for the model expanded through degree and order 10. Solid contours
indicate positive contributions. The contour interval in both panels is 500 kN/m. The net change in the LOD is
related to the integral of these contributions over the area of the CMB.
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to the free stream at the top of the electrically-conducting liquid core.
In calculating from these velocity fields the pressure fields acting
upon topographic relief of the CMR, it has been assumed that the
electrically-conducting core is in contact with the mantle over the
whole of the CMB. This is probably a reasonable supposition, but it
is interesting to speculate on the possibility that between the highly
conducting core and the weakly conducting lower mantle there might
exist a thin continuous layer or "pools" of weakly-conducting or
insulating liquid which have escaped detection by seismic methods.
The actual pressure field at the CMB might then differ from that
given by equation (2.4) [Hager and Richards, 1989]. It would have
to be determined from considerations of the dynamics of the hypo-
thetical intermediate layer or pools, and the relationship between the
two pressure fields might not be simple. If typical pressure gradi-
ents at the CMB were weaker than those at the top of the electrically-
conducting core, then the value of h needed to produce the neces-
sary torques on the mantle would have to be larger. However, the
idea of an intermediate layer is not supported by a parallel study to
the present one [R. Hide. and A. Jackson, in preparation], in which
decadal polar motion induced by topographic core-mantle coupling is
investigated.

As we have seen in Section 4, inferences concerning 4 can be
drawn from direct seismic measurements and also from attempts to
interpret the horizontal variations of the Earth's gravitational field in
terms of density variations in the mantle maintained by slow con-
vection there. In both cases, the implied value of h depends criti-
cally on the assumptions made concerning the properties of the
lower mantle. Seismic measurements give values greater than 1 km
unless there are substantial (~ 1%) lateral variations in seismic
velocities in the zone just above the CMB. The most likely candidate
is the D" layer of 100 - 300 km thickness. Consistent with this
"scenario” are the mantle convection studies, which give & of about
1 km where a chemically-distinct or low viscosity layer in the D"-
region is included, but a significantly greater value otherwise.

So far as future work on topographic core-mantle coupling is
concerned, as better geophysical and geodetic data and models
become available it will be necessary to repeat, refine, and extend the
calculations and comparisons made in the present paper along the
obvious lines already indicated. The results will have important
implications not only for the nature of the stresses responsible for
torques at the CMB and the structure of the Jower mantle and CMB
topography, but also, indirectly, for the magnetohydrodynamics of
the core and the nature of the geodynamo. Dynamo "models" can be
classified in terms of two characteristic features, namely (a) the
average strength of the toroidal magnetic field in the core (which for
“strong field" dynamos is typically much greater than that of the
poloidal field, whereas for "weak field” dynamos the two field types
are comparable in strength), and (b) whether or not dynamo action
extends throughout most of the volume of the core or is confined to
the upper reaches. Should more refined calculations either weaken
the case for significant topographic coupling, or consistently indicate
an excessive topographic couple, this would constitute evidence in
favor of electromagnetic torques at the CMB produced by dynamo
action concentrated just below the CMB.
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