Kinematic analysis of the Pakuashan fault tip fold, west central Taiwan: Shortening rate and age of folding inception

Martine Simoes,1,2,3 Jean Philippe Avouac,1 Yue-Gau Chen,4 Ashok K. Singhvi,5 Chien-Ying Wang,6 Manoj Jaiswal,7,8 Yu-Chang Chan,9 and Sylvain Bernard2

Received 30 November 2005; revised 2 October 2006; accepted 15 December 2006; published 13 February 2007.

[1] The Pakuashan anticline is an active fault tip fold that constitutes the frontal most zone of deformation along the western piedmont of the Taiwan Range. Assessing seismic hazards associated with this fold and its contribution to crustal shortening across central Taiwan requires some understanding of the fold structure and growth rate. To address this, we surveyed the geometry of several deformed strata and geomorphic surfaces, which recorded different cumulative amounts of shortening. These units were dated to ages ranging from ~19 ka to ~340 ka using optically stimulated luminescence (OSL). We collected shallow seismic profiles and used previously published seismic profiles to constrain the deep structure of the fold. These data show that the anticline has formed as a result of pure shear with subsequent limb rotation. The cumulative shortening along the direction of tectonic transport is estimated to be 1010 ± 160 m. An analytical fold model derived from a sandbox experiment is used to model growth strata. This yields a shortening rate of 16.3 ± 4.1 mm/yr and constrains the time of initiation of deformation to 62.2 ± 9.6 ka. In addition, the kinematic model of Pakuashan is used to assess how uplift, sedimentation, and erosion have sculpted the present-day fold topography and morphology. The fold model, applied here for the first time on a natural example, appears promising in determining the kinematics of fault tip folds in similar contexts and therefore in assessing seismic hazards associated with blind thrust faults.


1. Introduction

[2] Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate. The GPS-based plate tectonic model REVEL [Sella et al., 2002] indicates that the convergence rate is of ~90 mm/yr in a NW-SE direction (Figure 1). A fraction of this convergence is absorbed by crustal shortening across the Taiwanese range, west of the Longitudinal Valley suture zone. Progradation of sediments over the flexed foreland suggests a shortening rate of 39.5–44.5 mm/yr across the range over the last ~2 Myr, and this shortening appears to be mostly (if not totally) taken up by slip on the thrust faults of the western foothills [Simoes and Avouac, 2006]. These faults are the Chelungpu fault which broke during the 1999 ChiChi earthquake [Ma et al., 1999] (Figure 2), the Shuangtung, the Chushiang and the Changhua faults [Bonilla, 1975, 1999; Chen et al., 2004; Shyu et al., 2005; Tsai, 1985]. Except for the Chelungpu and Chushiang faults whose shortening rates have been recently estimated in the region of the Choushui Hsi river (Figure 2) [Simoes et al., 2007], the contribution of the other structures to crustal shortening across the Taiwanese range is not yet resolved [e.g., Cattin et al., 2004]. This study focuses on the Changhua thrust fault, which is the frontal most fault of central Taiwan (Figures 1 and 2), and which is presently the primary source of seismic hazards in this densely populated area [Lee and Lin, 2004]. This fault is blind [Delcaillau et al., 1998] and recent tectonic activity is evidenced from the ubiquitous presence of tilted geomorphic markers (Figures 3–5). The shortening rate and the age of folding inception are yet unresolved. In general, deciphering the kinematics of a fold formed above a blind fault, as is the case here, is reputedly difficult. The structural expression of folding can be subtle and dating of the folded
layers is often challenging. In addition, determining the kinematics of folding on a blind fault requires a fold model [e.g., Shaw et al., 2002], and the choice of the most appropriate model is generally non trivial (Figure 3). In this study, the finite structure of the fold is documented from existing seismic profiles and from new shallow seismic profiles (Figure A1), and is used to calibrate an analytical fold model [Bernard et al., 2007] derived from analogue modeling [Dominguez et al., 2003b]. This is the first application of this fold model to a natural setting. The fold model allows for retrieving the deformation history from growth strata and deformed fluvial terraces, which were surveyed in the field and dated using optically stimulated luminescence (OSL) (Figures 4–7).

2. Geological Setting
2.1. Evidence for Recent Activity and Morphology of the Pakuashan Anticline

[3] Geodetic data [Yu et al., 1997] show that the Changhua fault was primarily locked before the 1999 Chi-Chi earthquake [Dominguez et al., 2003a; Hsu et al., 1998; Loevenbruck et al., 2001]. Evidence for a few centimeters creep on the Changhua fault triggered by this earthquake was observed from radar interferometry [Pathier et al., 2003], but it seems probable that the fault mostly breaks during large earthquakes, such as the 1848 Mw ~ 7.1 Changhua earthquake [Tsai, 1985] (Figure 2). The Tatushan and Pakuashan anticlines are the geomorphic and structural expressions of deformation associated with slip on the Changhua blind thrust fault (Figure 2). They form an elongated ridge extending over ~80 km from north to south, with a mean elevation of ~250–300 m, and a maximum elevation of ~400 m to the south. East of these anticlines, the Taichung basin is a typical piggyback basin (Figure 2).

[4] The curvature of the Pakuashan anticline (Figure 2) is attributed to the geometry of the underthrusting basement [Mouthereau et al., 1999]. Seismic profiles show in particular that this fold has developed above an ancient normal fault that separates the Peikang High from the Taichung basin [e.g., Chang, 1971; Chen, 1978] (Figure 8). Normal faults in the basement are thought to be related to Paleocene rifting and Oligocene opening of the South China Sea, and were possibly reactivated during the Taiwan orogeny due to flexural bending of the foreland [Chou and Yu, 2002]. Reactivation is suggested by the presence of ~2–3 Ma deep offshore deposits (Cholan Formation) in the footwall of this hinge fault [Covey, 1984a, 1984b], and by strong lateral variations in the thickness of late Pliocene deposits (Figure 8). Younger deposits do not show lateral variations in thickness across the hinge fault. This implies that activity of this normal fault ceased most probably by early Pleistocene. The Pakuashan anticline is unconformably capped by lateritic fluvial deposits (Figures 2, 4, and 6), which have not yet been precisely dated but are thought to be younger than ~350 ka [Liew, 1988]. At places, several imbricate fluvial terraces separated by terrace risers can be distinguished. They provide evidence for recent activity of the Changhua thrust fault and for limb rotation during recent incremental folding (Figures 3–5). An implication is that the folding mechanism probably involves some component of pure shear deformation (Figure 3). The north-south variation of the morphology of the Pakuashan anticline (Figure 2) has been interpreted to reflect a southward propagation of deformation [Delcaillau et al., 1998]. Various authors have suggested variable estimates of the cumulative shortening across the Pakuashan anticline: ~500 m [Mouthereau et al., 1999], 700 m [Yue et al., 2005] or ~4 km [Delcaillau, 2001]. Likewise, the age of folding inception and the shortening rate absorbed by the Changhua fault are not well constrained.

2.2. Stratigraphy

[5] The Pakuashan anticline is deforming sediments initially deposited in the foreland basin west of Taiwan (Figure 8). The Mesozoic basement is overlain by a thick Cenozoic sedimentary cover, which is relatively well documented in earlier geophysical and stratigraphic studies [e.g., Chang, 1971; Chen, 1978; Covey, 1984a, 1986; Hung and Suppe, 2002; Lin et al., 2003; Wang et al., 2003, 2002] (Figures 2, 4, and 6). The chronostratigraphy of the series was established from calcareous nanoplankton [Chang
and Chi, 1983] and plankton foraminifera [Huang, 1984] and is calibrated using magnetostratigraphy [Horng and Shea, 1996]. Paleocene to late Miocene series of continental China affinity were deposited during an early rifting phase, from ~57 to 30 Ma, and during the opening of the South China Sea, from ~30 to 6.5 Ma [e.g., Briais et al., 1993; Lin et al., 2003]. According to Lin et al. [2003], the late Miocene (~6.5 Ma) basal unconformity marks the onset of the development of the foreland basin, and thus provides an age for initiation of the collision between the Luzon Arc and the Chinese Continental Margin. The late Miocene Kueichulin Formation, essentially composed of sandstones intercalated with sandy shales, is the first synorogenic sedimentary unit. It is conformably overlain by the Pliocene thin shales and siltstones of the Chinshui Formation. Above, the upper Pliocene Cholan Formation is constituted of light gray to brownish shales, intercalated with fine to coarse sandy layers. Upward in the section, the Toukoshan Formation forms a thick synorogenic Plio-Pleistocene clastic sequence, mainly composed of sandy sediments from braided rivers and deltaic environments trending upward to conglomerate river assemblages including sandstone lenses. Seismic profiles across the Pakuashan anticline suggest that all this Plio-Pleistocene sequence is conformable, and that it was deposited before shortening on the Changhua fault began (Figure 8).

These pregrowth deposits are unconformably overlain by lateritic fluvial terraces [Teng, 1987], mostly preserved along the axial line zone and on the backlimb of central and southern Pakuashan (Figures 2 and 4). To the north, smaller patches can still be observed along the backlimb (Figure 6). Since they postdate the last observed deposits of the Toukoshan Formation, these terraces are younger than ~0.5 Ma. Liew [1988] argues that they were deposited during a period of rising sea level possibly by 0.35 Ma, and that weathering has possibly occurred during the major transgression related to the Late Interglacial event 0.13 Myr ago. In addition, other recent alluvial sediments were deposited unconformably above the pretectonic strata on both sides of the Pakuashan anticline.

2.3. Pregrowth Sedimentation Rates

Sedimentation rates within the proximal foreland basin reflect the sedimentation history before initiation of shortening on the Changhua fault. To assess these rates, we use data from the PKS-1 well [Chang, 1971] in northern Pakuashan (Figures 2 and 6), for which a detailed analysis of sedimentary facies and nannostratigraphy is available [Covey, 1984b]. Nannoplankton zones are converted into
calendar ages based on the paleomagnetic calibration of Horng and Shea [1996]. This calibration provides results consistent with those inferred from other calibrated biostratigraphic timescales [Berggren, 1973; Berggren et al., 1995]. Sediment thicknesses in PKS-1 are decompacted using Audet’s [1995] porosity-depth relation with the parameters inferred in the offshore foreland basin by Lin et al. [2003] for the BD1 well. Burial depths are estimated taking into account ~300 m of erosion at the top of the sedimentary sequence [Covey, 1984b]. The calculated sedimentation rates increase upward (Figure 9), which is consistent with the progressive migration of the orogen to the west over its foreland [Covey, 1984a; Simoes and Avouac, 2006]. Sedimentation rates reach ~2.2 to 2.8 mm/yr over the last ~1 Myr in PKS-1, a value similar to the ~2~3 mm/yr subsidence rate averaged over the Holocene time period and documented west of Pakuashan [Lai and Hsieh, 2003].

3. Subsurface Structure of the Pakuashan Anticline

3.1. Seismic Profiles and Well Data Analysis

Available seismic profiles and well logs are georeferenced to a 40-m DEM and projected on a section perpendicular to the fold axis. The fold axis direction, N168° ± 3°E for the northern area and N0 ± 5°E for the southern area, is determined by fitting the tilt of the lateritic terraces preserved on the backlimb with planar surfaces using a least squares criterion. Note that the seismic profiles used here to constrain the subsurface geometry of the Pakuashan anticline have been previously interpreted in the different source papers. The earlier interpretation lines can look like reflectors and can therefore be misleading.

3.1.1. Northern Section

Several seismic profiles are available for the northern section of the Pakuashan anticline. Chen’s [1978] profile runs along the TaTu river, 2 to 8 km to the north of our study area (Figures 2 and 6). We converted the traveltimes, as provided in the original interpreted profile, to depths using the average velocities inferred from well shooting on PKS-1 [Chen, 1978] and from seismic refraction investigations in the same region [Sato et al., 1970] (see details in Appendix A). Although approximate, our conversion predicts depths consistent with those observed in the well PKS-1 (Figure 8 and Appendix A). Seismic investigations by Chang [1971] in the Taichung basin complement the former profile further east. Chang, however, did not describe the velocities used for depth conversion, and we assume that the velocities measured within the PKS-1 well or retrieved from earlier refraction investigations [Sato et al., 1970] were used. A good geometrical continuity is observed between...
this profile with the one from Chen [1978], despite a slight difference in the estimated depth of the top of the Cholan Formation. This most certainly relates to the smearing out of the difference in the estimated depth of the top of the Cholan Formation along PKS-1. The apparent continuity of the well-stratified sequence at a depth of ~2800 m below the core of the Pakuashan anticline [Chen, 1978] (red star in Figure 8). This location is consistent with the seismic profile of Figure 8, which shows that the Changhua fault does not reach the surface (Figure 8). One possibility would be that the fault would ramp to a decollement within the stratigraphic sequence at a depth of ~1700 m. In this case, the fold would be a blind bend fold [Suppe, 1983] over a blind ramp. However, there is no indication of significant deformation transferred to the west of the Pakuashan anticline (Figure 2). We therefore rather favor the hypothesis that the Pakuashan anticline formed at the blind tip of the leading edge of the Changhua fault.

13 Downdip of the intersection with PKS-1 it is rather difficult to estimate the Changhua fault’s geometry directly from the seismic line. One possibility is that the fault roots into some decollement at a level as shallow as its intersection with PKS-1. Chen [1978] proposes that the Changhua decollement roots within the Cholan formation, at ~2700–3000 m depth beneath the Taichung Basin. However, this interpretation is inconsistent with independent geometrical observations. There is good evidence that the Chilungpu Shales, at ~4200 m depth beneath the Taichung Basin [Chang, 1971], are the decollement level of the Chelungpu fault farther east [e.g., Yue et al., 2005] (Figures 2 and 11). If we admit Chen’s [1978] interpretation, the Changhua decollement would connect to the ramp of the Chelungpu fault. In this case, the junction is geometrically unstable, and any significant slip on the Changhua fault would require a kink in the ramp of the Chelungpu fault. No such clues are observed on the seismic lines of Wang et al. [2002] along the Tatu and the Choushui Hsi (Figure 11). It is therefore most probable that the Changhua and the Chelungpu faults are in this case fault further east [e.g., Yue et al., 2005] (Figures 2 and 11).
root into the same level, the Chinshui Shales, at ~4200 m depth.

3.3. Structural Evolution of the Pakuashan Anticline

The Pakuashan anticline has probably developed as a result of thrusting along a decollement within the Chinshui Shales. It probably started as a detachment fold [e.g., Mitra, 2003] and is now evolving toward a fault bend fold as a ramp is starting to develop and cut through the detached and folded sections. This structural evolution is typical of fold-and-thrust belts (for other examples, see Avouac et al., [1993] or Shaw et al. [2002]), and has also been observed in analogue modeling [Bernard et al., 2007]. Deformed fluvial terraces show progressive tilting (Figures 3 and 5) and indicate that some amount of distributed shear (either pure or simple shear) is required. A shear fault bend fold model [e.g., Suppe et al., 2002] is a possibility and has been suggested for the section across southern Pakuashan [Suppe, 1983; Yue et al., 2005]. In this case, dips are expected to be constant within dip domains as in the classical case of fault bend folding, although not necessarily parallel to the fault at depth. However, seismic
profiles indicate that in Pakuashan dip angles vary gradually with depth even at the subsurface (Figure 8), excluding the application of this model to Pakuashan. In any case, as explained above, this anticline is best described as a fault tip fold. Because tilted terraces do not provide any evidence for the migration of kink bands (Figure 5) and because together with dips varying with depth they are more consistent with models of distributed pure shear, Pakuashan cannot be considered as a fault propagation fold as defined by Suppe and Medwedeff [1990]. Detachment folds [Dahlstrom, 1990; Épard and Groshong, 1995; Mitra, 2003] and trishear fault propagation folds [Allmendinger, 1998; Erslev, 1991] are examples of models of pure shear fault tip folds. Hereafter we will see that the pure shear fold model proposed by Bernard et al. [2007] reconciles both the finite structure and the recent deformation across this anticline.

4. Field Survey and Chronological Constraints on the Stratigraphy

The construction of highway 74 across the northern part of the fold gave us access to fresh outcrops for structural measurements and sampling for the chronology of pregrowth and growth strata across northern Pakuashan (Figures 6 and 7). In southern Pakuashan, we also surveyed a tilted strath terrace (Figures 4 and 5). Tables 1 and 2 summarize the positions, tilts and ages obtained for the different surveyed levels. The topography and the geometry of the preserved lateritic terraces were extracted from the DEM (Figures 4–6).

4.1. Survey of Pregrowth and Growth Strata

The strata along highway 74 across northern Pakuashan are all fluvial deposits from braided to deltaic environments, mostly characterized by fine-grained sandy to argillaceous levels intercalated within poorly sorted coarser-grained sediments (Figure 7). We measured accurately the attitude and position of all the significant strata using a real-time kinematic (RTK) GPS system, coupled to a geodetic laser range distance meter for distant targets. This procedure allows for a very precise relative positioning of the surveyed layers and keeps all measurements tied to a consistent reference frame (procedural details in Appendix B). Theoretically, it is possible to measure the position and...
orientation of any bed provided that the points measured at
the outcrop do not occur on a single line. Often, only an
apparent dip angle in the direction of the plane tangent to the
outcrop surface can be determined accurately. Apparent dip
angles measured along roadcuts were corrected to true dips
by considering the azimuth of the fold axis. All these
calculations were performed using least squares regressions
in which residuals are weighted by the uncertainties on
measurements (see Appendix B for details).

We followed essentially contacts between layers with
different characteristics, such as contrasted grain sizes
(Figure 7). At a number of sites we followed paleosoils
defined by thin oxidized levels between adjacent fine-
grained deposits. Other markers, such as erosive contacts
at the base of river channels filled with conglomerates,
were also clearly mapped. Most of the strata observed were
moderately to highly weathered. A dark gray argillaceous
layer of deltaic sediments was surveyed at the very front of
the fold (Figure 12a). Since all strata were deposited in the
same environments and since variation of dip angles are
subtle (Table 1), it turned out to be difficult to distinguish
between pretectonic and syntectonic strata on the basis of
our field observations only. Only at one site, subtle pro-
grressive unconformities at the very front of the fold sug-
gested the presence of growth strata (Figure 12a). We
noticed a N160°/C176°E–85°W minor normal fault on the back-
limb, which is probably associated with some extrados
extension, i.e., extension of the outer surface of the bent
layer (Figure 6). This fault may have affected dip angles at
sites BC13 to BC17.

To the south, we surveyed the tilted strath surface of a
fluvial terrace previously investigated by Ota et al. [2002]
(Figure 4). Despite the similar sedimentary facies, the strath
could be identified from the difference of consolidation
between the conglomeratic Toukoshan formation and the
less consolidated more recent fluvial deposits on top

Figure 7. (a) Stratigraphic column of the section surveyed in the forelimb of Pakuashan along highway
74 (northern transect). The position of all samples collected in the field for 14C or OSL dating is reported
(Table 2). BC12 is on the axial surface of the fold (Figure 6). (b) Decompacted sediment thicknesses
versus depositional ages for all samples from the forelimb of northern Pakuashan. Ages were determined
for four samples (blue diamonds). The radiocarbon age of Pakua1-C (light diamond) is only a minimum
estimate (Table 2). Other ages (small red circles) are calculated from decompacted sedimentary
thicknesses separating samples, pinned to the available OSL age constraints. A weighted least squares
regression through all the layers, except those inferred in the field to be growth strata in the frontal zone
(Figure 12a), yields a sedimentation rate of 2.0 ± 0.7 mm/yr, indicating that these levels are most
probably pregrowth. Given the minimum age from sample Pakua1-C, growth layers at the front yield a
much lower sedimentation rate of 0.3 mm/yr at most. See text for details on decompaction of the
surveyed units.
This erosive surface appeared to be more tilted than the top of the fluvial deposits (by \( ^{12}C17 \)). Strath terraces are particularly appropriate for morphotectonic analyses because their initial geometry can be compared to the presently active riverbed [e.g., Lave and Avouac, 2000; Simoes et al., 2007].

4.2. Chronological Constraints

Several pieces of wood of more than 100 g each were sampled for radiocarbon dating in the nonoxidized deltaic sediments outcropping at the very front of the anticline along highway 74 (BC4 in Table 2 and Figure 12a). These samples proved to be too old for this method (>43,700 years B.P., Beta-192152). South of the Pakuashan anticline, the tilted strath terrace surveyed in the field (Figure 4) was dated by radiocarbon to 30,400 ± 200 years B.P. (NTU-3279) and 30,950 ± 290 years B.P. (NTU-3509) by Ota et al. [2002]. In our analysis, we will consider the older of these two similar ages from Ota et al. [2002] since it is most probably closer to the age of riverbed abandonment represented by the strath surface.

Since the outcropping layers are probably too old for radiocarbon and too young and coarse to get good constraints from magnetostratigraphy, OSL dating appeared as the most appropriate technique during our field investigation. This technique dates sediment burial away from sunlight exposure. Principles of the technique and details of the handling of our samples are given in Appendix C. A total of 7 samples were analyzed (Table 2 and Figures 4 and 6). In northern Pakuashan, sample AYS15 dates the remnants of the lateritic surface preserved on the backlimb of the fold (Figure 6). It was collected 21 m below the top of the terrace, from a weathered fine sandy lens interlayered within coarser gravel. Along Highway 74, Pakua5-TL was collected from the axial line zone, and Pakua2/3/4-TL from the forelimb. Together, these samples span a wide time interval from 21 to 340 ka (Table 2). In southern Pakuashan, AYS16 constrains the age of the lateritic surface P2 to 21 ka (OSL) (Figure 12b).
This sample was collected in a trench at a depth of 2.2 m below the surface of the terrace, within a homogenous layer of clay-rich weathered silts overlying well-rounded gravels. Pakua1-TL is taken along a terrace riser, ~30–50 m below the top of the lateritic terrace P4 at this location (Figure 4), and corresponds to fine sandy lenses interlayered within coarser fluvial deposits. This sample is dated to 19 ± 4 ka and probably represents an upper bound for the age of P4. Because deposition rates of fluvial terraces can be quite rapid in this region [Simoes et al., 2007], we attribute this age to the top of P4 in our subsequent analysis. Terrace P2 is certainly younger than P4 because of its gentler tilt and lower altitude (Figure 5). This is consistent with the OSL ages obtained given the uncertainties on the estimates. We did not find any sample to date the other lateritic fluvial terraces represented in Figures 4 and 5. However, the tilt of terrace P1 is similar to the tilt of the terrace dated by radiocarbon to 30,950 ± 290 years B.P. by Ota et al. [2002] south of the Choushui Hsi (Figure 5). In the case there is no major lateral variation in the deformation style in the distance between P1 and this terrace, this age can be proposed as a good approximation for P1. No particular constraints are available for P3, except that it should be younger than 19 ± 2 ka (Figure 5).

5. Modeling the Kinematics of the Pakuashan Anticline

5.1. Choice of the Appropriate Model

We aim at determining how cumulative shortening across the Pakuashan anticline evolved over time using depositional ages of pregrowth and growth strata. To retrieve the shortening rate from growth strata [e.g., Suppe et al., 1992] using a graph such as the one in Figure 13, dip
Figure 11. Geometry at the junction between the Chelungpu and the Changhua faults at the level of our northern section, as imaged from the seismic profiles of Wang et al. [2002] (Figure 2). Slip $V_d$ transferred at depth is partitioned at the junction between the Chelungpu ($V_1$) and Changhua ($V_2$) faults. If the Changhua fault rooted onto the Cholan formation as proposed by Chen [1978], the junction would occur on the ramp of the Chelungpu fault. In this case a kink in the ramp is expected. This is in fact not observed, and the two faults most probably root into the same decollement level within the Chinshui Shales. This is consistent with the observed dip angles of the faults at the junction, if we account for the $\sim 12$ to $\sim 15$ mm/yr shortening rate on the Chelungpu fault [Simoes et al., 2007], the $\sim 16$ mm/yr rate on the Changhua fault derived in this study, and for the subsequent total $\sim 28$–$31$ mm/yr slip rate on the common decollement (vector diagram).

Table 1. Field Measurements for Northern and Southern Pakuashan

<table>
<thead>
<tr>
<th>Name</th>
<th>Measurement</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Altitude, m</th>
<th>Strike</th>
<th>Dip</th>
<th>$2\sigma$ on Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1</td>
<td>RTK</td>
<td>120.56</td>
<td>24.03</td>
<td>75</td>
<td>168</td>
<td>7.0</td>
<td>0.2</td>
</tr>
<tr>
<td>BC2</td>
<td>RTK</td>
<td>120.56</td>
<td>24.03</td>
<td>69</td>
<td>168</td>
<td>6.8</td>
<td>0.1</td>
</tr>
<tr>
<td>BC3</td>
<td>RTK</td>
<td>120.56</td>
<td>24.03</td>
<td>73</td>
<td>168</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td>BC4</td>
<td>RTK</td>
<td>120.55</td>
<td>24.02</td>
<td>31</td>
<td>168</td>
<td>5.1</td>
<td>0.2</td>
</tr>
<tr>
<td>BC5</td>
<td>RTK</td>
<td>120.55</td>
<td>24.03</td>
<td>41</td>
<td>168</td>
<td>4.6</td>
<td>0.2</td>
</tr>
<tr>
<td>BC6</td>
<td>RTK</td>
<td>120.56</td>
<td>24.03</td>
<td>59</td>
<td>168</td>
<td>6.2</td>
<td>0.3</td>
</tr>
<tr>
<td>BC7</td>
<td>RTK</td>
<td>120.57</td>
<td>24.04</td>
<td>105</td>
<td>168</td>
<td>4.1</td>
<td>0.4</td>
</tr>
<tr>
<td>BC10</td>
<td>RTK</td>
<td>120.58</td>
<td>24.05</td>
<td>187</td>
<td>168</td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>BC11</td>
<td>RTK</td>
<td>120.58</td>
<td>24.05</td>
<td>189</td>
<td>168</td>
<td>2.1</td>
<td>0.1</td>
</tr>
<tr>
<td>BC12</td>
<td>RTK</td>
<td>120.58</td>
<td>24.06</td>
<td>186</td>
<td>168</td>
<td>5.5</td>
<td>0.5</td>
</tr>
<tr>
<td>BC13</td>
<td>RTK</td>
<td>120.58</td>
<td>24.06</td>
<td>136</td>
<td>168</td>
<td>1.6</td>
<td>0.1</td>
</tr>
<tr>
<td>BC14</td>
<td>RTK</td>
<td>120.59</td>
<td>24.07</td>
<td>122</td>
<td>168</td>
<td>1.9</td>
<td>0.1</td>
</tr>
<tr>
<td>BC15</td>
<td>RTK</td>
<td>120.59</td>
<td>24.07</td>
<td>123</td>
<td>168</td>
<td>2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>BC16</td>
<td>RTK</td>
<td>120.58</td>
<td>24.07</td>
<td>132</td>
<td>168</td>
<td>6.3</td>
<td>0.8</td>
</tr>
<tr>
<td>BC17</td>
<td>RTK</td>
<td>120.58</td>
<td>24.07</td>
<td>132</td>
<td>168</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>BC18</td>
<td>RTK</td>
<td>120.58</td>
<td>24.06</td>
<td>138</td>
<td>168</td>
<td>3.5</td>
<td>0.2</td>
</tr>
<tr>
<td>BC19</td>
<td>RTK</td>
<td>120.58</td>
<td>24.07</td>
<td>136</td>
<td>168</td>
<td>3.7</td>
<td>0.2</td>
</tr>
<tr>
<td>BC22</td>
<td>RTK</td>
<td>120.59</td>
<td>24.08</td>
<td>49</td>
<td>168</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>0906-1</td>
<td>laser</td>
<td>120.56</td>
<td>24.03</td>
<td>68</td>
<td>168</td>
<td>7.7</td>
<td>0.6</td>
</tr>
<tr>
<td>0906-6</td>
<td>laser</td>
<td>120.55</td>
<td>24.02</td>
<td>36</td>
<td>168</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0906-7</td>
<td>laser</td>
<td>120.55</td>
<td>24.03</td>
<td>42</td>
<td>168</td>
<td>4.8</td>
<td>0.9</td>
</tr>
<tr>
<td>0906-8</td>
<td>laser</td>
<td>120.57</td>
<td>24.04</td>
<td>91</td>
<td>168</td>
<td>5.0</td>
<td>0.5</td>
</tr>
<tr>
<td>0906-9</td>
<td>laser</td>
<td>120.56</td>
<td>24.03</td>
<td>57</td>
<td>168</td>
<td>6.1</td>
<td>1.6</td>
</tr>
<tr>
<td>0906-10</td>
<td>laser</td>
<td>120.56</td>
<td>24.03</td>
<td>65</td>
<td>168</td>
<td>4.2</td>
<td>1.2</td>
</tr>
<tr>
<td>0906-11</td>
<td>laser</td>
<td>120.57</td>
<td>24.04</td>
<td>106</td>
<td>168</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>0907-1</td>
<td>laser</td>
<td>120.57</td>
<td>24.05</td>
<td>175</td>
<td>168</td>
<td>3.8</td>
<td>3.3</td>
</tr>
<tr>
<td>0907-2</td>
<td>laser</td>
<td>120.58</td>
<td>24.03</td>
<td>192</td>
<td>168</td>
<td>8.9</td>
<td>2.7</td>
</tr>
<tr>
<td>0907-5</td>
<td>laser</td>
<td>120.58</td>
<td>24.06</td>
<td>131</td>
<td>168</td>
<td>3.3</td>
<td>1.0</td>
</tr>
<tr>
<td>0907-7</td>
<td>laser</td>
<td>120.59</td>
<td>24.07</td>
<td>149</td>
<td>168</td>
<td>5.3</td>
<td>1.5</td>
</tr>
<tr>
<td>0907-8</td>
<td>laser</td>
<td>120.59</td>
<td>24.07</td>
<td>109</td>
<td>168</td>
<td>3.7</td>
<td>1.5</td>
</tr>
<tr>
<td>0907-9</td>
<td>laser</td>
<td>120.58</td>
<td>24.08</td>
<td>82</td>
<td>168</td>
<td>6.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Strath (south)</td>
<td>laser</td>
<td>120.68</td>
<td>23.79</td>
<td>170</td>
<td>90</td>
<td>2.8</td>
<td>0.2</td>
</tr>
</tbody>
</table>

*aSee Figures 4 and 6. Altitudes are corrected for the observed shift between RTK GPS measurements and DEM data (Appendix B). Apparent dip angles measured on roadcuts are converted to true dip angles by assuming the strike direction. The strath measurement in southern Pakuashan refers to our survey of the strath surface associated with the fluvial terrace dated by Ota et al. [2002]. Positive dips indicate plunges to the west, while negative values indicate dips to the east. For further details, see Appendix B.*
angles measured in the field are to be converted into cumulative shortening. For that a model of fold growth is needed.

As discussed previously, there is convincing evidence that the Pakuashan anticline is a fault tip fold with limb rotation resulting from pure shear (Figures 3 and 5). Numerous pure shear fold models have been described in

<table>
<thead>
<tr>
<th>Site</th>
<th>Sample</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Altitude, m</th>
<th>Method</th>
<th>Age, years</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC4</td>
<td>Pakua1-C</td>
<td>120.55</td>
<td>24.02</td>
<td>31</td>
<td>C14 (Beta-192152)</td>
<td>&gt;43,700 B.P.</td>
</tr>
<tr>
<td>0906-6</td>
<td>Pakua4-TL</td>
<td>120.55</td>
<td>24.02</td>
<td>36</td>
<td>OSL</td>
<td>29,000 ± 3,000</td>
</tr>
<tr>
<td>BC2</td>
<td>Pakua2-TL</td>
<td>120.56</td>
<td>24.03</td>
<td>69</td>
<td>OSL</td>
<td>128,000 ± 44,000</td>
</tr>
<tr>
<td>BC3</td>
<td>Pakua3-TL</td>
<td>120.56</td>
<td>24.03</td>
<td>73</td>
<td>OSL</td>
<td>143,000 ± 46,000</td>
</tr>
<tr>
<td>BC10</td>
<td>Pakua5-TL</td>
<td>120.58</td>
<td>24.05</td>
<td>187</td>
<td>OSL</td>
<td>340,000 ± 66,000</td>
</tr>
<tr>
<td>0906-6</td>
<td>AYS15</td>
<td>120.61</td>
<td>24.05</td>
<td>68</td>
<td>OSL</td>
<td>21,000 ± 3,000</td>
</tr>
<tr>
<td>BC10</td>
<td>AYS16</td>
<td>120.62</td>
<td>23.89</td>
<td>317</td>
<td>OSL</td>
<td>19,000 ± 2,000</td>
</tr>
</tbody>
</table>

Table 2. Dating Samples and Associated Surveyed Levels*  
*See Table 1 and Figures 2, 4 and 6. OSL analyses were performed at the Planetary and Geosciences Division of the Physical Research Laboratory (Ahmedabad, India). Pakua1-TL and AYS16, in the southern section of the anticline, date the lateritic surfaces P4 and P2, respectively (Figure 4). The remnants of the lateritic surface to the north are dated by AYS15 (Figure 6). See Appendix C for details on the handling of the samples.

As discussed previously, there is convincing evidence that the Pakuashan anticline is a fault tip fold with limb rotation resulting from pure shear (Figures 3 and 5). Numerous pure shear fold models have been described in

---

Figure 12. Pictures of the field survey. (a) Field picture locating BC4 and 0906-6 sedimentary contacts (black lines) and dating samples Pakua4-TL and Pakua1-C in northern Pakuashan (Figure 6 and Tables 1 and 2). Also emphasized in this picture are the dips of successive sediment layers (blue dotted lines), showing subtle progressive unconformities. (b) Strath surface associated to the 30,950 ± 290 years old terrace [Ota et al., 2002] south of the Pakuashan anticline (Figure 4). This erosive contact separates the more indurated fluvial sediments of the Toukoshan Formation and the more recent deposits that were sampled for dating.
the literature. These include the detachment fold model [Dahlstrom, 1990; Epard and Groshong, 1995; Mitra, 2003] or the trishear fault propagation fold model [Allmendinger, 1998; Allmendinger and Shaw, 2000; Erslev, 1991; Zehnder and Allmendinger, 2000]. The high competence contrast between sedimentary units, usually invoked for detachment folds, is not observed in the present case. For the trishear approach, an unlimited number of velocity fields can be generated by varying the propagation-to-slip ratio of the fault [Allmendinger, 1998; Allmendinger and

Figure 13. Schematic deformation pattern of a fault tip fold and principle of our approach. Strata deposited prior to fold growth (black) have all recorded the same amount of cumulative shortening. Younger growth strata (red), which were deposited during fold growth, have recorded different increments of shortening [e.g., Suppe et al., 1992]. The shortening rate, here assumed constant, and age of folding inception can be determined from such a plot.

Figure 14. Sketch illustrating how (top) horizontal displacements and (middle) uplift relate to incremental shortening \( d \) according to the pure shear fold model of Bernard et al. [2007], as expressed by equations (1) and (2). Inset illustrates how the dip angle \( \beta \) acquired in a dip domain \( i \) relates to the incremental shortening \( d \) as a function of the model parameters \( \alpha_i \) and \( \lambda \) of elevation above the decollement \( z \) as expressed by equation (3).
for which we do not have any geological constraints in the case of the Changhua fault. Finally, these models would in principle apply to Pakuashan but we did not find any simple way of using them in a parameterized form that would make it possible to adjust accurately the observed structure of this anticline. We therefore favor an alternative approach based on the fold model of Bernard et al. [2007], which is derived from a sandbox experiment composed of sand layers intercalated with glass beads. Given the cohesion of these materials, the sand thickness of 4.8 cm is equivalent in nature to 4.8 km of sediments. In this experiment, a fault tip fold develops at the front of a critical sand wedge, which mimics a fold-and-thrust belt system at the back of the growing frontal fold. Given the boundary conditions, the probable material properties and the scaling factor, the experiment is an appropriate analogue to a fold such as Pakuashan. During fault tip folding, Bernard et al. [2007] observe that internal deformation occurs by distributed pure shear until a ramp forms by strain localization. From the displacement field monitored by a video system, Bernard et al. [2007] propose simple analytical expressions for incremental horizontal and vertical velocity fields (Figure 14). In practice, any model assuming mass conservation (as this one does) should yield the same shortening history provided that continuous deformed layers can be retrieved across the whole fold. However, for Pakuashan, only discontinuous markers of deformation were surveyed in the field. The model derived by Bernard et al. [2007] has the capacity to deal with such discontinuous markers, and is actually simpler to implement than other existing models. This study is the first application of this model to a natural setting.

5.2. Analytical Expressions for Incremental Displacements and Tilting During Folding

[24] The key observation in the sandbox experiment of Bernard et al. [2007] is that the horizontal velocity varies linearly over the whole fold area and that the uplift rate varies linearly within domains separated by axial surfaces. These axial surfaces remain approximately fixed relative to the undeformed footwall (Figure 14). The incremental horizontal displacement $v(x, z)$ resulting from an increment of shortening $d$ at the back of the thrust sheet is a linear function of distance $x$ between the first and last hinges of the fold (Figure 14):

$$v(x, z) = d(1 - \lambda(z)x)$$

where $z$ is the elevation above the decollement level, and $\lambda(z) = \frac{1}{W(z)}$ with $W(z)$ the width of the fold at elevation $z$. 

Figure 15. Analysis of the seismic profiles for northern Pakuashan, projected onto section A-A’ (Figure 2). Only the shallow levels not affected by the buried hinge fault (Figure 8) are digitized and modeled. Colored surfaces show the excess area defined by the major reflectors that can be traced over most of the fold. Mass conservation implies that excess area is proportional to cumulative shortening and to the height of the reflectors above the decollement (equation (5), top inset). The baselines of the surfaces represent the probable initial geometry of the reflectors. They show a dip angle increasing with depth (bottom inset). Red lines indicate the axial surfaces delimiting the dip domains considered in the modeling.
Incremental vertical displacement \( u(x, z) \) is also a linear function of horizontal distance within each domain \( i \) defined by two consecutive axial surfaces:

\[
u_i(x, z) = a_i z d x / C_0 x_i(z) + u_i(C_0)
\]

where \( a_i \) is a parameter characteristic of domain \( i \) (Figure 14), and \( x_i \) is the horizontal position of the axial line separating consecutive domains \( i \) and \( i-1 \). The term \( u_{i-1}(x, z) \) is the incremental uplift at the point of coordinate \((x, z)\) along the axial line, and ensures continuity of vertical displacements between consecutive domains. Deformation by distributed pure shear allows for limb rotation during folding. Within the domain \( i \), the change in dip angle \( \beta_i \) associated with an incremental shortening \( d \) is given by

\[
\tan(\beta_i) = \frac{a_i z d}{1 - \lambda(z) d}
\]

from equations (1) and (2) (Figure 14). Equation (3) can be simply used to convert the dip angle of a pregrowth or growth stratum into cumulative shortening. Equations (1)–(3) provide an Eulerian description of the velocity field that should be used only for infinitesimal incremental deformation.

Figure 16. Excess area as defined in Figure 15 versus depth for section A-A' across northern Pakuashan. A weighted least squares regression favors a 2770 ± 2300 m decollement depth and a finite shortening of 1440 ± 780 m (dashed line). To reduce uncertainties on these values, the decollement is imposed within the Chinshui Shales, as indicated from independent data. In this case, the retrieved finite shortening is 800 ± 90 m. The minimum depth of the Changhua decollement is given by the evidence of a fault zone along the PKS-1 well [Chen, 1978] (Figure 8). Inset shows layer shortening versus initial depth. It is calculated by comparing total shortening retrieved from the line length method and the value of 800 m obtained from the excess area technique.

5.3. Fold Model for Northern Pakuashan

The analytical model is calibrated from the modeling of the finite deformation as revealed by the deep structure of the Pakuashan anticline. We follow the procedure proposed by Bernard et al. [2007].

5.3.1. Calibrating Model Parameters From Seismic Profiles

Another approach consists in comparing dip angles of growth and pregrowth strata at the same location \((x, z)\). In domain \( i \), strata with different dips \( \beta_{i,1} \) and \( \beta_{i,2} \) and originally at the same altitude \( z \) have different cumulative shortenings, \( d_1 \) and \( d_2 \), respectively. If \( d_1 \) is known, as for pregrowth layers (in this case \( d_1 = D \) where \( D \) is the total cumulative shortening), then \( d_2 \) can be estimated:

\[
d_2 = \frac{\tan(\beta_{i,2}) d_1}{\tan(\beta_{i,1})(1 - \lambda(z) d_1) + \tan(\beta_{i,2}) \lambda(z) d_1}
\]

This formulation does not depend on the parameter \( a_i \), which is more sensitive to the seismic profile resolution than \( \lambda(z) \). It should be noticed that equations (3) and (4) only apply to domains where dip angles are not subhorizontal. In the case dip angles are close to being horizontal, and provided that the initial burial depth is known, an alternative approach is to calculate cumulative shortening from the total uplift of the layer using equation (2), or, equivalently, from the amount of shortening needed to retrodeform the layer back to its assumed initial position. This approach applies essentially to layers that can be traced continuously across the fold zone.

5.3. Fold Model for Northern Pakuashan

The analytical model is calibrated from the modeling of the finite deformation as revealed by the deep structure of the Pakuashan anticline. We follow the procedure proposed by Bernard et al. [2007].

5.3.1. Calibrating Model Parameters From Seismic Profiles

Well-defined reflectors that can be traced across a significant fraction of the fold are first selected (Figure 15).
The strata below ~1500–2000 m, which are affected by the buried hinge fault (Figure 8), are discarded. We select four reflectors that are conformable and most probably predate initiation of shortening on the Changhua fault (Figure 15). The baseline obtained by linearly interpolating the extremity of these reflectors is interpreted to represent the initial geometry of the layers. The dip angle of this baseline increases linearly with depth (bottom inset in Figure 15). This is consistent with the development of the flexural basin that predates deformation, and compaction of the sediments may have amplified the pattern. Total shortening is estimated from the excess area method [Epard and Groshong, 1993]. If folding results from a total horizontal shortening \( D \) of a unit with thickness \( h \) detached from the footwall, mass conservation implies that the area \( A \) above the baseline is:

\[
A = D \cdot h = D(Z - Z_d)
\]

where \( Z \) and \( Z_d \) are the depths of the baseline and of the decollement, respectively (top inset in Figure 15). Equation (5) assumes that cross-sectional area is preserved during folding, implying that out-of-the-plane transport and volume changes can be neglected. Using this approach, a regression with account on the uncertainties on the depths and on the areas (Appendix D) yields a decollement depth of 2770 ± 2300 m and a total cumulative shortening of 1440 ± 780 m (Figure 16). In the absence of independent constraints on the decollement depth, these results favor a decollement within the Cholan formation. The large uncertainty is however compatible with a decollement within the Chinshui Shales, which seems more plausible as discussed earlier (Figure 11). Accordingly, if we impose the decollement to lie within the Chinshui shales at a depth of 4200 ± 860 m, the shortening is then estimated to 800 ± 90 m (Figure 16). From this value, we also calculate line length changes and find that beds have shortened by 640 to −742 m (Figure 16). This is a significant amount relative to the total shortening across the fold, and confirms that the Pakuashan anticline has formed primarily by distributed pure shear.

**Figure 17.** Plot of \( \frac{\tan(\beta)(1 - \lambda(z)D)}{D} \) as a function of the altitude \( z \) of a layer above the decollement, for dip domains (top) within the backlimb and (bottom) within the forelimb of northern Pakuashan. Numbers identifying dip domains relate to the axial surfaces delimiting them. The first axial surface is taken at the back of the fold and numbers increase from east to west (Figure 15). For instance, the first two axial surfaces to the east define domain 1–2. Dips \( \beta \) are calculated along the reflectors digitized on the seismic profiles (Figure 15). Several data points are considered for each domain. The altitude \( z \) corresponds to the initial altitude of the reflector, prior to deformation, as estimated from the baselines of the excess area surfaces. Calculation of uncertainties is detailed in Appendix D.
Table 3. Model Parameters for Northern Pakuashan

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total shortening, m</td>
<td>800</td>
<td>90</td>
</tr>
<tr>
<td>λ (at surface)</td>
<td>−9.50E-05 b</td>
<td>2.48E-06</td>
</tr>
<tr>
<td>α</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 1 – 2</td>
<td>2.22E-08</td>
<td>1.23E-10</td>
</tr>
<tr>
<td>Domain 2 – 3</td>
<td>4.35E-08</td>
<td>1.30E-10</td>
</tr>
<tr>
<td>Domain 3 – 4</td>
<td>2.78E-08</td>
<td>2.94E-10</td>
</tr>
<tr>
<td>Domain 4 – 5</td>
<td>1.37E-08</td>
<td>3.93E-10</td>
</tr>
<tr>
<td>Domain 5 – 6</td>
<td>−2.27E-08</td>
<td>1.43E-09</td>
</tr>
<tr>
<td>Domain 6 – 7</td>
<td>−4.17E-08</td>
<td>1.81E-09</td>
</tr>
<tr>
<td>Domain 7 – 8</td>
<td>−7.98E-08</td>
<td>2.04E-09</td>
</tr>
<tr>
<td>Domain 8 – 9</td>
<td>1.24E-09</td>
<td>7.49E-10</td>
</tr>
<tr>
<td>Domain 9 – 10</td>
<td>−7.76E-08</td>
<td>2.52E-09</td>
</tr>
<tr>
<td>Domain 10 – 11</td>
<td>−9.68E-08</td>
<td>3.19E-09</td>
</tr>
<tr>
<td>Domain 11 – 12</td>
<td>−1.36E-08</td>
<td>2.98E-09</td>
</tr>
<tr>
<td>Domain 12 – 13</td>
<td>−2.24E-07</td>
<td>1.33E-08</td>
</tr>
</tbody>
</table>

bUncertainty calculations are detailed in Appendix D. Numbers identifying dip domains relate to the axial surfaces delimiting them. The first axial surface is taken at the back of the fold and numbers increase from east to west (Figure 15). For instance, the first two axial surfaces to the east define domain 1–2.

αRead −9.50E-05 as −9.50 × 10−5.

5.4. Fold Model for Southern Pakuashan

[30] In the case of southern Pakuashan, we follow the same approach as for the northern transect based on the seismic profile of Hung and Suppe [2002], as interpreted by Yue et al. [2005] (Figure 10). The precision is not as good as for northern Pakuashan, in particular at the front of the fold where some reflectors suggest layers dipping steeply to the west. Domains of homogeneous dip angles are determined. The excess area method yields a total shortening D of 850 ± 90 m if we fix the depth of the decollement to ~4200 m within the Chinshui Shales (Figure 19). Initial dip angles as defined from the baselines (Figure 10), and parameters λ(z) and αi are retrieved from the seismic profile (Table 4). Here also, the linear relation observed between \[\tan(\beta_i)(1 - \lambda(z)D)/D \] and the altitude z above the decollement (Figure 20) illustrates the consistency between the model and the actual mode of folding. The reconstructed fold geometry matches well the observed pattern, except for the frontal most area. The fit to the data is here not as good as for the northern transect, due possibly to the poorer quality of the interpreted seismic profile (Figure 10). The mean residual between observed and predicted dip angles is 0.6°. The standard deviation of this misfit is 4.8°, and drops to 3.5° if the frontal area is not included. This latter value is subsequently considered (Appendix D) because our field measurements in this area are all on the backlimb of the fold.

5.5. Determination of the Shortening History

[31] Dip angles measured in the field are first corrected for the estimated initial geometry of the layer. The estimated tilts are then converted into shortening using equations (3) or (4).

5.5.1. Analysis of Southern Pakuashan

[12] We use here the tilt recorded by three dated geomorphic markers: the strath terrace dated to 30,950 ± 290 years B.P. [Ota et al., 2002], and lateritic surfaces P2 and P4 (Figure 4) dated to 19,000 ± 2000 years and 19,000 ± 4000 years, respectively (Table 2). The initial geometry of the strath terrace can be approximated by the present gradient of the Choushui Hsi (0.4°W). More precisely, because of the wide distribution of ancient fluvial terraces in the area, it can be expected that the fluvial valley was wider in the past so that the river gradient was less steep than at present. Given this possibility, we consider a wide range of possible initial dip angles for the strath of 0.2 ± 0.2°W. We measure on the DEM average values of 1.7 and 2.2°E dip angles for P2 and P4, respectively (Figure 5a). These values are taken over most of the backlimb of the fold. They do not include the highest and lowest portions of P2 and P4 where the terraces may not be sampled because of hillslope processes, or sedimentation at the back of the fold. Assessing the initial geometry of these surfaces is non trivial, and we were not able to identify in the field the bottom of the fill deposits. To account for this unknown, we therefore use in our analysis the tilt measured from the top of the terraces and assign a large uncertainty of 1°.

[13] Using the calibrated fold model, we calculate the dip angles predicted for pregrowth strata at the location of these...
geomorphic markers, and subsequently use equation (4) to
derive the cumulative shortening of these terraces. These
values and the ages of the terraces provide a shortening rate
of 15.2 ± 3.7 mm/yr across southern Pakuashan (N90 ± 5 E
direction). Since the finite shortening across the fold in this
area is of 850 ± 90 m, deformation would have initiated
55,700 ± 6300 years ago (the procedure used to estimate
uncertainties is detailed in Appendices E and F). From the tilt
of the lateritic terraces P1 (3.9°E) and P3 (1.5°E) (Figure 5),
we estimate their cumulative shortenings to ~580 and
~240 m, respectively. The shortening rate derived for
southern Pakuashan suggests that terraces P1 and P2 would
be ~38,100 and ~15,700 years old, respectively.

5.5.2. Analysis of Northern Pakuashan

[34] In this section, we consider our field data along
highway 74 (Table 1), which may encompass both pre-
growth and growth layers. In the case of the pregrowth
layers, the relation between depositional depth and initial
dip angle obtained in Figure 15 is used to correct our
structural measurements and estimate tilts acquired during
folding. We can not simply assess the initial geometry of the
growth strata, and we therefore assign them a large uncer-
tainty of 1°.

[35] Because subtle dip changes did not permit clear
identification of pregrowth from growth strata in the field,
we differentiate them on the basis of the sedimentation rate
estimated from the stratigraphic thickness separating the
dated samples (Figure 7). Indeed, we expect sedimentation
rates of 2 to 3 mm/yr in the case of strata deposited before
deforation inception, as inferred from PKS-1 (Figure 9),
and lower values for growth layers. As along highway 74 all
OSL ages were obtained on samples from the forelimb, and

Figure 18. Modeling finite deformation from the calibrated fold model for northern Pakuashan. Model
parameters are listed in Table 3. (a) Predicted deformation for initially horizontal levels (red lines) after
800 m of total shortening. This pattern is compared to the seismic profile of Figure 8. The geometry of
the blind thrust is schematic and only indicates the depth of the decollement. The misfit between the
observed and predicted dips is 0.1° on average. The standard deviation of the distribution of the misfit is
of 3° and is used to estimate the error on the predicted dip angles using the calibrated fold model.
(b) Restored geometry of the reflectors indicated in Figure 15. The restoration is based on the calibrated
fold model for 800 m of shortening. The original geometry inferred from this analysis predicts initial dip
angles that range from 2.1° to 1.8°, in good agreement with data. The misfit between model and
observations is largest at the front of the fold (shaded area). The deepest level in this shaded area shows a
predicted initial dip angle too steep because this level does not seem deformed in the original seismic
profile.
as some faulting was observed on the backlimb, only the data from the forelimb are considered here. To estimate the sedimentation rates from stratigraphic thicknesses, sediments are decompacted using the porosity-depth law of Audet [1995] and the parameters determined by Lin et al. [2003] from the BD1 well offshore western Taiwan. To solve for the burial depth of the units, we assume first that BC12, along the axial zone (Figure 6), is pretectonic. We use the fold model calibrated previously to retrodeform BC12 by \( /C24 800 \) m. This calculation implies an initial depth of \( /C24 418 \) m. Using this value, initial burial depths for other data points are estimated, and decompacted sedimentation rates are calculated (Figure 7b). A weighted linear regression through all the data yields a rate of \( 1.5 \pm 0.2 \) mm/yr, too low in view of the constraints from PKS-1 (Figure 9). If the layers inferred to be syntectonic at the front of the fold because of observed progressive unconformities (Figure 12a) are discarded, we get a sedimentation rate of \( 2.0 \pm 0.7 \) mm/yr (Figure 7b) in reasonable agreement with the rate inferred from PKS-1 (Figure 9). This indicates that all the strata surveyed in the field are pregrowth except for those in the frontal most portion of the anticline. From the sedimentation rate pattern of Figure 7b, the transition between pregrowth and growth strata indicates that folding initiated \( 70 \) kyr ago.

[36] We then correct measured dip angles for the assumed initial geometry. In the case of the surveyed pregrowth layers, corrected dip angles do not vary much in the forelimb, with an average value of \( 6.1 \pm 1.7^\circ \)W consistent on a first approximation with the fold model derived along the Tatu Hsi river (Figure 21). This value certainly holds further west as indicated by the shallow seismic line L1 (Figure 21). Slightly further north (Figure 6), steeper angles of \( \sim 10–12^\circ \)W are shown on the easternmost portion of line L2. This suggests that there are significant lateral variations in the geometry of the structures over northern Pakuashan. Therefore we will only rely on the geometry of surveyed pregrowth strata and on line L1, which was shot along highway 74 (Figure 6). To simplify our analysis with equation (4), we therefore assume a value of \( 6.1 \pm 1.7^\circ \)W for the dip angles of pregrowth strata over the section surveyed in the forelimb.

[37] Finally, we use equation (4) to estimate the cumulative shortening of layers surveyed along highway 74 and of the tilted lateral terraces dated by AYS15 on the backlimb (Figure 6). Most strata yield a cumulative shortening consistent with the \( 800 \pm 90 \) m total shortening inferred from the excess area technique except for the growth strata dated to \( 29,000 \pm 3,000 \) years and for the lateritic surfaces dated to \( 21,000 \pm 3000 \) years (Table 5). Use of these data alone yields a shortening rate of \( \sim 10.7 \) mm/yr. With a total shortening of \( \sim 800 \) m, it indicates an age of folding inception of \( 74,700 \) years, slightly too old in view of the youngest pregrowth layer derived in Figure 7. This tendency is essentially related to the growth layer surveyed in the forelimb (Figure 22). When we also account for the youngest pregrowth layer as giving the minimum age of initiation of deformation, we get a shortening rate of \( 11.2 \pm 1.8 \) mm/yr (along section A-A', Figure 2) and an age of folding inception of \( 71,300 \pm 8,100 \) years.

5.6. Kinematics of the Pakuashan Anticline: Shortening Rate and Age of Deformation Inception

[38] When data from southern and northern Pakuashan are compared, no evidence for a significant difference in age of folding inception or in shortening rate is seen. If we now account for the N118\(^\circ\)E direction of transport across the western foothills [e.g., Dominguez et al., 2003a; Yu et al.,...]

Table 4. Model Parameters for Southern Pakuashan

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total shortening, m</td>
<td>850</td>
<td>90</td>
</tr>
<tr>
<td>( \lambda ) (at surface)</td>
<td>(-1.34E-04)</td>
<td>(7.08E-06)</td>
</tr>
<tr>
<td>( \alpha )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 1–2</td>
<td>(5.92E-08)</td>
<td>(6.75E-10)</td>
</tr>
<tr>
<td>Domain 2–3</td>
<td>(1.90E-08)</td>
<td>(2.91E-10)</td>
</tr>
<tr>
<td>Domain 3–4</td>
<td>(8.50E-08)</td>
<td>(1.88E-09)</td>
</tr>
<tr>
<td>Domain 4–5</td>
<td>(1.21E-10)</td>
<td>(1.09E-11)</td>
</tr>
<tr>
<td>Domain 5–6</td>
<td>(-2.33E-07)</td>
<td>(1.35E-08)</td>
</tr>
</tbody>
</table>

\(^a\)See Figure 10. Uncertainty calculations are detailed in Appendix D. See caption of Table 3 for numbers identifying dip domains.
and consider the data from both transects across Pakuashan, we estimate the total finite shortening to 1010 ± 160 m, the shortening rate to 16.3 ± 4.1 mm/yr, and the age of folding inception to 62,200 ± 9600 years (Figure 22). We assume that lateral transfer of material out of the direction of transport is negligible. Rather than the southward propagation of the anticline suggested by Delcaillau et al. [1998], the difference of morphology of southern and northern Pakuashan probably reflects different structural architectures (Figures 10 and 15) that could be partly related to the complex geometry of the underthrusting Chinese margin in this area.

6. Discussion

6.1. Applicability of the Fold Model of Bernard et al. [2007]

The Changhua fault started to localize and propagate upward to depths of ~1700 m (Figure 8). The tilt of the
lateritic surfaces (Figure 5) implies that the Pakuashan anticline still deforms by pure shear, at least near the surface. It can therefore be compared to the advanced stage of folding observed in the sandbox experiment of Bernard et al. [2007] after 3.4 mm of shortening, when deformation starts getting localized at depth. At this stage of the experiment, the deformation pattern becomes more complex, with two subtle shear bands in the forelimb of the fold, but incremental displacements can still be accounted for by the pure shear analytical expressions. Bernard et al. [2007] have tested the approach followed for the present case study, by calibrating analytical expressions from the synthetic finite structure obtained at this stage of folding, and by testing them against actual observed incremental displacements. Calculated displacements are found to be in good agreement with the observed values, except around the shear bands developing in the forelimb. In this case, calculated values underestimate the actual displacements by 10%. Should this apply to Pakuashan, then this may explain why the growth layer from the forelimb of the northern transect tends to lower the shortening rate (Figure 22, bottom) in light of the youngest pregrowth layer. Neglecting this growth layer implies a shortening rate on the Changhua fault of 17.3 mm/yr, in this case from only the lateritic terrace dated in the north by sample AYS15 (Figure 6) and from the three terraces on the backlimb of the southern transect. This rate is still within the error limits of the present estimate. Initiation of localization of the fault should therefore not significantly impact our results.

6.2. Morphologic Evolution of the Pakuashan Anticline

6.2.1. Morphology of the Pakuashan Anticline and Age of the Topography

[46] The kinematic fold model derived from the present study can be used to assess how sedimentation, uplift and erosion, have jointly created the observed topography and morphology. We model here the structure predicted by taking into account subsidence of the footwall and foreland sedimentation. We assume a constant sedimentation rate of 2.5 mm/yr, as derived in Figure 9. Folding starts at 62 ka, and this model reproduces the deposition and subsequent deformation of growth strata. Figure 23 shows the prediction of the model for the northern transect along the Tatu Hsi river. Sedimentation exceeds uplift near the frontal most part of the fold and on the eastern side of the backlimb (Figure 23a). The competition between uplift and sedimentation thus determines the width of the topographic expression of the fold. Growth strata are only found in these areas where sedimentation rate exceeds uplift. Also it provides an explanation as to why the fold structure extends below the Taichung Basin (Figure 15). These observations also apply to the southern transect across Pakuashan (Figure 24a), although the growth strata area within the backlimb is more limited. A larger fraction of the backlimb is buried under the basin in northern Pakuashan, whereas most of the backlimb is morphologically expressed in the southern area. This simple exercise illustrates how sedimentation and structurally controlled tectonics and uplift can contribute to produce different morphologies with similar kinematics of shortening.

[41] In a forward model, we mimic the deposition of an alluvial terrace across the fold at 19 ka and 21 ka for the southern and northern transects, respectively, equivalent to the observed lateritic surfaces. The predicted geometry of these terraces closely mimics the present topography of the fold for both sections (Figures 23b and 24b), although the predicted pattern for the 21 ka old surface to the north is slightly higher than the observed topography, indicating that most of the terrace has only recently been eroded away (Figure 23b). This is consistent with the Pakuashan anticline

---

**Table 5. Cumulative Shortening Retrieved for the Layers Surveyed in the Field**

<table>
<thead>
<tr>
<th>Layer</th>
<th>Acquired Dip, deg</th>
<th>Error</th>
<th>Predicted Dip, deg</th>
<th>Error</th>
<th>Shortening, m</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Southern Pakuashan (N90 =5E Direction)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strath of the 30,950 years B.P. old terraceb</td>
<td>3.0</td>
<td>0.4</td>
<td>5.9</td>
<td>3.5</td>
<td>457</td>
<td>153</td>
</tr>
<tr>
<td>Lateritic terrace P4b</td>
<td>2.2</td>
<td>1.0</td>
<td>5.9</td>
<td>3.5</td>
<td>338</td>
<td>140</td>
</tr>
<tr>
<td>Lateritic terrace P2b</td>
<td>1.7</td>
<td>1.0</td>
<td>5.9</td>
<td>3.5</td>
<td>265</td>
<td>141</td>
</tr>
<tr>
<td><strong>Northern Pakuashan (N78 =3E Direction)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC1</td>
<td>−7.5</td>
<td>1.0</td>
<td>−6.1</td>
<td>1.7</td>
<td>966</td>
<td>236</td>
</tr>
<tr>
<td>BC2</td>
<td>−7.2</td>
<td>1.0</td>
<td>−6.1</td>
<td>1.7</td>
<td>939</td>
<td>224</td>
</tr>
<tr>
<td>BC3</td>
<td>−5.5</td>
<td>1.0</td>
<td>−6.1</td>
<td>1.7</td>
<td>726</td>
<td>144</td>
</tr>
<tr>
<td>BC4</td>
<td>−5.1</td>
<td>1.1</td>
<td>−6.1</td>
<td>1.7</td>
<td>682</td>
<td>114</td>
</tr>
<tr>
<td>BC5</td>
<td>−4.7</td>
<td>1.2</td>
<td>−6.1</td>
<td>1.7</td>
<td>622</td>
<td>91</td>
</tr>
<tr>
<td>BC6</td>
<td>−6.7</td>
<td>0.8</td>
<td>−6.1</td>
<td>1.7</td>
<td>873</td>
<td>222</td>
</tr>
<tr>
<td>BC7</td>
<td>−5.2</td>
<td>3.7</td>
<td>−6.1</td>
<td>1.7</td>
<td>696</td>
<td>195</td>
</tr>
<tr>
<td>BC12</td>
<td>−6.3</td>
<td>0.7</td>
<td>−6.1</td>
<td>1.7</td>
<td>822</td>
<td>224</td>
</tr>
<tr>
<td>0906-1</td>
<td>−8.2</td>
<td>0.5</td>
<td>−6.1</td>
<td>1.7</td>
<td>1047</td>
<td>316</td>
</tr>
<tr>
<td>0906-6b</td>
<td>−2.0</td>
<td>2.0</td>
<td>−6.1</td>
<td>1.7</td>
<td>277</td>
<td>162</td>
</tr>
<tr>
<td>0906-7</td>
<td>−4.8</td>
<td>0.9</td>
<td>−6.1</td>
<td>1.7</td>
<td>640</td>
<td>134</td>
</tr>
<tr>
<td>0906-8</td>
<td>−6.0</td>
<td>0.6</td>
<td>−6.1</td>
<td>1.7</td>
<td>790</td>
<td>216</td>
</tr>
<tr>
<td>0906-9</td>
<td>−6.8</td>
<td>0.4</td>
<td>−6.1</td>
<td>1.7</td>
<td>883</td>
<td>277</td>
</tr>
<tr>
<td>0906-10</td>
<td>−4.8</td>
<td>0.0</td>
<td>−6.1</td>
<td>1.7</td>
<td>635</td>
<td>240</td>
</tr>
<tr>
<td>0906-11</td>
<td>−3.4</td>
<td>0.4</td>
<td>−6.1</td>
<td>1.7</td>
<td>457</td>
<td>129</td>
</tr>
<tr>
<td>0907-6</td>
<td>4.8</td>
<td>0.3</td>
<td>5.9</td>
<td>3.1</td>
<td>657</td>
<td>209</td>
</tr>
<tr>
<td>0907-9</td>
<td>6.0</td>
<td>1.0</td>
<td>5.8</td>
<td>3.1</td>
<td>825</td>
<td>116</td>
</tr>
<tr>
<td>Lateritic terraceb</td>
<td>2.9</td>
<td>1.0</td>
<td>9.1</td>
<td>3.1</td>
<td>270</td>
<td>115</td>
</tr>
</tbody>
</table>

bPositive dips plunge to the east, and negative values plunge to the west. Layers showing some complexities (faulted areas, complex geometry of the surveyed contact, etc.) or for which dip angles were too flat are not considered here.

Growth layers or geomorphic surfaces.

---
being nearly capped by the remnants of these lateritic surfaces to the south rather than to the north (Figure 2). The pattern of Figures 23b and 24b also implies that the present topography only reflects the cumulative deformation over the past ~20 kyr, and that almost all the topography created prior to the last glacial maximum has been eroded away. We cannot estimate whether the topography was removed during a period of particular intense erosive climate ~20 kyr ago, or whether erosion prior to that had continuously prevented the emergence of an anticlinal ridge. In any case, erosion was possibly enhanced ~20 kyr ago because of a low stand sea level (~130 m below present sea level in the Taiwan area, see compilation by Lai and Hsieh [2003]). Finally, the differences in uplift rates along the two sections (Figures 23a and 24a) are related to the fold structure rather than to varying kinematics, and we propose that they generate the lateral variations in the fold morphology (Figure 2). In particular, lower uplift rates to the north may be responsible for the more dissected morphology.

Figure 22. (top) Cumulative shortening versus age of the strata surveyed in the field, combining data for northern (blue) and southern (red) Pakuashan along the N118°E direction of tectonic transport. Cumulative shortening is calculated by converting acquired dip angles using equations (3) and (4) (Table 5) and by unprojecting these results obtained along sections A-A’ and B-B’ onto a N118°E direction. Ages were obtained from OSL dating or calculated from sedimentation rates and stratigraphic thicknesses (Figure 7). The kinematics is consistent from north to south, with a shortening rate of 16.3 ± 4.1 mm/yr. (bottom) Shortening versus age for dated growth layers.

[42] The system of former imbricate fluvial terraces within southern Pakuashan (Figures 4 and 5) further elucidates interaction between erosion and uplift. In particular, the estimated ~20 kyr long time lag separating the oldest (P1) and youngest (P3) terraces certainly represents the time needed before total defeat of the Choushui Hsi river in this area. On the basis of these estimated ages, our model predicts a differential incision between P1 and P3 of ~220 m at most, too high in view of the observed ~150 m elevation difference (Figure 5a). This is certainly because structural lateral variations may prevent from applying the model calibrated along the Choushui Hsi to terraces as far north as P1. Indeed, such structural changes relative to the transect along the Choushui Hsi are suggested by the abrupt change in the fold morphology at the level of P1 (Figures 2 and 4).

6.2.2. Balance Between Tectonic Uplift, Fluvial Incision, and Hillslope Erosion

[43] River incision since the inception of folding can be estimated by comparing the topography predicted by the
model incorporating footwall subsidence with the present river valley geometry. Along the Tatu river, the eroded cross-sectional area (Figure 23) yields an incision rate of 4.2 mm/yr averaged over the fold width, with a maximum value of 8.3 mm/yr along the axial zone. Along the Choushui river, to the south, it suggests higher average incision rates of 8.7 mm/yr, with a maximum of 15.1 mm/yr along the fold axis. These estimates are similar, although lower for the northern section, to the 7 to 16 mm/yr river incision rates proposed by Dadson et al. [2003] within the southwestern foothills. As rivers can adjust their width to modulate their erosive power [Lave and Avouac, 2001], they are more likely to keep pace with uplift induced by tectonics, in excess of the base level rise resulting from foreland sedimentation. During the last glacial low stand, high erosion rates might have prevailed over Pakuashan, because the ubiquitous lateritic fluvial deposits indicate that the Tatu and the Choushui Hsi were eroding the whole fold area. During sea level (and thus river base level) rise over the last ~20 kyr, the width of these two rivers had to narrow to maintain an erosive power sufficient to cross the frontal most active fold. Within the fold, lower erosion rates (by comparing predicted and observed topography) are responsible for its morphological expression. If climate and tectonic factors are kept constant, topography should evolve toward a steady state geometry characterized by slopes being steep enough for hillslope processes to be at pace with tectonic uplift and river incision. Preservation of the ~30 to ~19 kyr old lateritic terraces indicates that such a state has not yet been achieved since the last major climate epoch. The characteristic time needed to achieve a morphological steady state is therefore of the order of a few tens of thousand years in this particular case example.

7. Conclusion

[44] In this study, we model the incremental growth of the Pakuashan anticline above the Changhua blind thrust by combining the finite structure of the fold deduced from seismic profiles with the geometry of dated growth strata.
We use the pure shear fold model of Bernard et al. [2007], which provides simple analytical expressions to model incremental fold growth as well as the finite fold structure in the case of a fault tip fold. Contrary to the trishear fault propagation model, which is another example of a parameterized pure shear fold model [Allmendinger, 1998; Allmendinger and Shaw, 2000; Erslev, 1991; Zehnder and Allmendinger, 2000], this model does not require an explicit account on the fault geometry or on the kinematics at depth. Therefore it cannot be used to make any inference about fault propagation or fault geometry. However, it offers a powerful and simple tool to estimate the shortening history across a fold using growth and pregrowth strata as well as deformed geomorphic markers. We find that deformation across Pakuashan initiated 62,200 ± 9600 years ago, with a shortening rate of 16.3 ± 4.1 mm/yr. Combined with constraints on the foreland sedimentation, our model shows how the present morphology of the Pakuashan anticline has resulted from the combination of uplift and erosion by river incision or hillslope processes. This study is the first application of this analytical fold model to a natural setting and we anticipate its application to a variety of other folds formed above blind thrust faults.

Appendix A: Seismic Profiles Analysis

A1. Northern Transect

[45] In the case of Chen’s [1978] profile, we convert the vertical scale from traveltimes to depths using the average velocities inferred from well shooting on PKS-1 [Chen, 1978] and from seismic refraction investigations [Sato et al., 1970]. These velocities are thought to be more accurate than the slightly lower velocities (up to ~20%) obtained from the seismic reflection survey [Chen, 1978]. The seismic profile is segmented in three main subsets determined by a homogeneous or comparable velocity. The first subset comprises the top of the Toukoshan Formation down to a traveltime of 1059 ms and is attributed a velocity of 2434 m/s. The second one consists mainly of the lower Toukoshan Formation and most of the Cholan Formation. All deeper layers
are attributed a velocity of 4200 m/s. This velocity can be too high for Miocene series, but this does not impact our analysis because all deformation associated with folding occurs at shallower depths. This conversion is only approximate, but is found to predict depths for the different strata that are consistent with those observed on the well PKS-1 (see section A3). In the case of Chang’s [1971] profile we assume that the depth conversion was performed in the source paper using the same velocities. On the more recent profile of Wang et al. [2002], the velocities inferred for depth conversion are ~10% higher than those known in the western plain area. Therefore we reduce the vertical scale by this same amount. This correction applies mainly for the shallower strata, and is realistically not totally appropriate for levels deeper than ~4200 m.

A2. New Shallow Seismic Investigations in Northern Pakuashan: Data Processing

[46] In this study, shallow seismic investigations were conducted on the frontal most portion of our field area in northern Pakuashan. The equipments were (1) an EWG-III weight drop impact pulse generator for the source signal, (2) an OYO 40 Hz geophone receiver, and (3) a GEODE 144 channel seismograph to record the signal. The acquisition geometry used end-on shooting with the following survey parameters: (1) 6 m source interval, (2) 2 m receiver interval, (3) 100 m near offset, (4) fold of 24, (5) 0.25 ms sampling rate, and (6) 40 Hz low-cut filter. Because of traffic noise associated with highway 74, field work was conducted at night. The data processing follows standard procedures for CDP data, except for additional emphasis on some dip filters to suppress strong ground rolls. The frequency range of the seismic signals is 50–150 Hz. Depths are obtained by converting time to depth using a layered velocity model based on the stacked velocities of the best seismic line obtained in this experiment and by using the Dix equation (1) 1750 m/s for traveltime ranges between 0 and ~100 ms, (2) 2200 m/s from ~100 to ~300 ms, (3) 2600 m/s between ~300 and ~500 ms, and (4) 3300 m/s between ~500 and ~1000 ms. The mean velocity of 2621 m/s for depths between 0 and 1650 m, is similar to the velocities in the same depth range inferred from previous studies in the area. The seismic lines are displayed without interpretation in Figure A1.

A3. Uncertainties on Depths and Dips Extracted From Seismic Profiles

A3.1. Uncertainties on Depths

[47] Uncertainties on the depth of the reflectors relate primarily to the uncertainties on the velocity model used to convert times into depth. To estimate these errors, we compare depths of well-defined layers as estimated from the seismic profiles and from the available well logs. Results are illustrated in Table A1 for the cases of Chen’s [1978] and Hung and Suppe’s [2002] profiles, which have been compared to the PKS-1 [Chang, 1971] and TC-1 (J.-H. Hung, personal communication, 2005) wells, respectively. Depths do not differ by more than 5.2% and generally agree by ~3–4%. The agreement is particularly good, by 0.05% for the shallower reflectors in the northern area. A direct comparison with well data is not possible for each seismic line. We assume that the comparison made here holds for all the profiles used in this study. We thus consider a maximum error of 5.5% on the depths inferred from the seismic profiles.

Figure A1. Shallow seismic profiles conducted in the northern Pakuashan area (Figure 6). Line W1 shows no deformation and thus constrains the westernmost limit for the Pakuashan anticline. Lines L1 and L2 show dipping layers providing constraints on the subsurface structures at the front.
Table A1. Error Estimate on the Position of Different Reflectors Observed From Chen’s [1978] and Hung and Suppe’s [2002] Profiles Across Northern and Southern Pakuashan

<table>
<thead>
<tr>
<th>Formation</th>
<th>Chen’s [1978] Profile Versus PKS-1</th>
<th>Hung and Suppe’s [2002] Profile Versus TC-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholan</td>
<td>0.05%</td>
<td></td>
</tr>
<tr>
<td>Chinsuhi</td>
<td>5.2%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Kuechulin</td>
<td>3.9%</td>
<td>5.2%</td>
</tr>
<tr>
<td>Talu Shale</td>
<td>3.8%</td>
<td></td>
</tr>
<tr>
<td>Shihtu</td>
<td>4.2%</td>
<td></td>
</tr>
<tr>
<td>Pre-Miocene</td>
<td>1.0%</td>
<td></td>
</tr>
</tbody>
</table>

*Based on the positions observed in the PKS-1 [Chang, 1971] and TC-1 (J.-H. Hung, personal communication, 2005) wells, respectively. The top of the different formations has been considered. Predicted depths are in agreement with the observed ones, with a maximum error of 5.2%.

A3.2. Uncertainties on Dips

Our analysis requires estimation of dip angles of subsurface layers. We select and digitize only well-defined reflectors. The uncertainty on the dip angle arises from the errors on the horizontal and vertical distances separating consecutive points along the digitized reflectors. It therefore depends on the uncertainty on the strike of the considered layer (for the horizontals) and on the depth conversion of the seismic profile (for the verticals). Uncertainties on dips are calculated accordingly by partial derivatives taking into account the errors on the fold axis direction and on the depths inferred from the seismic profiles. This yields an error of 2.7% on the dip angles for most of the data retrieved for northern Pakuashan. The uncertainty is larger (about 11.5%) for the dip angles derived from the more oblique profiles of Chang [1971] and Wang et al. [2002]. In the case of the southern area, the uncertainty on the dip angles is estimated to 5.4%.

Appendix B: Field Data Acquisition

B1. Field Survey Methodology

To measure bedding attitude and position, we used a real-time kinematic (RTK) GPS system, the Trimble 5700® RTK GPS, equipped with a Trimble Zephyr® antenna (for more information on the system, see http://trl.trimble.com/doctype/latex/5700/5700WPlus.pdf). The RTK GPS system involves two units kept in radio contact: a fixed one, the base, and a mobile one, the rover. The surveyed points are measured with the rover unit and the uncertainty on the position relative to the base station is quite low (within about 1 cm in the verticals and even better in the horizontal). These differential measurements allow for very precise positions because most of the errors inherent to GPS signals cancel out when only the local baselines are solved (except for multipath and receiver errors). In this study we used the RTK GPS system with a Trimble Zephyr® antenna (for more information: laseratlanta.com/advantage.htm) equipped with a magnetic compass was used in combination with our RTK GPS system. The instrument measures distance, inclination and azimuth of the laser ray from the shooting point measured with the RTK GPS system to the targets.

The field measurements were finally all tied to the 40-m resolution digital elevation model (DEM), using ground control points. Only a rigid translation was applied. This step leads to significant corrections of the measured elevations by 22.5 ± 0.2 m and by −2.1 ± 0.7 m in the northern and southern areas, respectively. The topography and the geometry of the preserved lateritic terraces were extracted from the DEM (Figures 4 and 6).

B2. Uncertainties on Positions and Dip Angles

The uncertainties, at the 95% confidence level, on the positions measured from the RTK GPS are of 1 cm + 1 ppm of the signal RMS for horizontal coordinates, and of 2 cm + 1 ppm of the signal RMS for the vertical coordinates. In the case of the distant targets measured from the laser system, errors associated with the laser were added to those related to the RTK GPS measurement of the position of the shooting point. Uncertainties on the distance taken from the laser are of the order of 3 to 5 cm but we rather use a value of 15 cm in our calculations since field work was performed during the wet season. The inclinometer and the magnetic compass yield uncertainties of 0.4 and 0.3°, respectively. Since the laser height was measured with a meter stick, we assign it a maximum uncertainty of 2.5 mm (half a graduation). Finally, transposing these measurements to the DEM generates an additional error of 0.2 to 0.7 m in the vertical coordinates.

The azimuth of the vertical plane tangent to the outcrop (generally a roadcut) and the plunge of the layer within this plane (the apparent dip angle) is determined from a least squares fitting algorithm [Lybanon, 1984] that takes into account all the uncertainties on the single points surveyed along each strata. This algorithm is implemented into an easy-to-use routine by T. Hubert and S. Mellema (2002) (for more information: http://physics.gac.edu/~huber/fitting/), and provides uncertainties on the results with a 95% confidence level. The apparent dip angles are used to estimate the real dip angles by assuming a N168 ± 3° E and N90 ± 5° E general strike for northern and southern Pakuashan, respectively. Uncertainties on the results are then calculated by the partial derivative method. We estimate that these uncertainties correspond to a 95% confidence level although the partial derivative method maximizes the calculated uncertainties.

Appendix C: OSL Dating

Luminescence dating [Aitken, 1985, 1998] is based on the fact that (1) decay of natural radioactivity from the $^{230}$Th, $^{232}$Th, and $^{40}$K chains creates a natural radiation field which as a first approximation remains constant through time and (2) minerals, such as quartz and feldspar, acquire a luminescence signal due to exposure to this ionizing radiation. The intensity of luminescence is proportional to the absorbed dose and is thus a function of time. In the case of sediments, preburial exposure of mineral to day light during weathering and transport removes the geological luminescen-
cence. On burial, the daylight exposure ceases and a reacquisition of luminescence due to the ambient environmental radiation field is initiated. This method can therefore be used to directly date the age of sediment burial. In practice, the cumulative dose is measured from the luminescence produced by the minerals upon thermal or optical laboratory stimulation. The age of sediment burial is then calculated using the equation

\[
\text{age} = \frac{\text{acquired luminescence}}{\text{annual rate of luminescence acquisition}}
\]

This can be converted into radiation dose units given the equation

\[
\text{age(ka)} = \frac{\text{paleodose(in Gyr)}}{\text{annual dose rate(in Gyr/kyr)}}
\]

where the “paleodose” is the radiation level associated with the observed luminescence signal. The “annual dose rate” is determined by measuring the concentration of radionuclides \(^{238}\text{U}\), \(^{232}\text{Th}\) and \(^{40}\text{K}\), and by using standard conversion factors and appropriate water content values. The contribution of the cosmic rays is also added [Aitken, 1985, 1998].

[54] In the present study, a total of 7 samples were analyzed (Tables 2 and C1). They were collected after cleaning the outerop surfaces of the strata being sampled. After that, metal pipes were inserted into the sediments under dark conditions to ensure that the samples did not experience any daylight exposure during sampling and transport to the laboratory. Samples Pakua1-TL, Pakua4-TL, AYS15 and AYS16 are mostly sands, and Pakua2-TL, Pakua3-TL and Pakua5-TL comprised sandy silts. Consequently, Pakua1-TL, Pakua4-TL, AYS15, and AYS16 were analyzed using coarse grain quartz and the three others were analyzed using the fine grain technique. For the former 4 samples, the sample pretreatment comprised a sequential reaction with 10% HCl and 30% H\(_2\)O\(_2\) to remove carbonates and organic matter, followed by sieving to obtain 90–150 \(\mu\)m grains. A density separation using Na-Polytungstate (\(\rho = 2.58 \text{ g/cm}^3\)) was carried out to separate quartz and feldspar minerals. The quartz fraction was then etched with 40% HF for 80 min followed by 12 N HCl for 60 min to remove the alpha skin and residual feldspars. A portion of these grains was tested for purity using the infrared stimulated luminescence. The grains were subsequently mounted on stainless steel discs using Silkospray\textsuperscript{®}. The quartz measurements were done on Riso TL-DA-15 reader with blue LED (\(\lambda = 470 \pm 20 \text{ nm}\)) for stimulation. The detection optics comprised Hoya U340 and Schott BG-39 filters coupled with 9635 QA photo multiplier (PMT) tube. Laboratory irradiation was realized using a \(^{90}\text{Sr}/^{90}\text{Y}\) source, delivering a dose rate of \(\sim 7.5 \text{ Gyr/min}\). Single aliquot regeneration (SAR) protocol allowed for computing the corresponding paleodoses [Murray and Wintle, 2000]. Given the relative overall antiquity of the ages, we generally used the mean of the distribution of SAR ages, except for AYS15 and AYS16. In fact, these two samples gave a scattered distribution of their respective dose rates, suggesting that they had not been totally bleached during deposition. Chen et al. [2003] reported similar problems for samples from western Taiwan, and attributed them to the fast deposition of sediments in the region. For these reasons, minimum ages for AYS15 and AYS16 are considered more meaningful for our analysis. On the other hand, the samples from silt-dominated units (Paku2-TL, 3-TL and 5-TL) were processed separately to get 4–11 \(\mu\)m grains. In this case, samples after treatment by HCl and H\(_2\)O\(_2\) were defloculated in 0.1 N sodium oxalate, and subsequently washed and then suspended in acetone for Stoke’s separation of the 4–11 \(\mu\)m fine silt fraction. The separated fraction was resuspended and equal volumes were then pipetted onto aluminum discs in cylinders with a column of acetone over them. The acetone was then evaporated at \(\sim 45^\circ\text{C}\), after what a thin layer was left on the discs. Infrared stimulated luminescence (IRSL) measurements using infrared diodes (\(\lambda = 880 \pm 80 \text{ nm}\)) were carried out using a Daybreak 1150 TL-OSL reader. Detection optics comprised Corning 7–59 and Schott BG-39 filters for IRSL, which were used with all the measurements done on a Daybreak 1100 reader. The \(\beta\) irradiation was done separately using \(^{90}\text{Sr}/^{90}\text{Y}\) source having a dose rate of 2.44 Gyr/min. Alpha irradiation was done using Americium-241 to compute the ‘a’ value. Multiple aliquot additive dose method with late light subtraction allowed for computing the paleodoses. A preheat of 240°C for 10 s removed the unstable signal. For dose rates, \(^{238}\text{U}\) and \(^{232}\text{Th}\) concentrations were measured by ZnS (Ag) thick sample alpha counting using Daybreak 583 alpha counters. \(^{40}\text{K}\) concentration was estimated by gamma spectrometry using NaI (TI) crystal and a multichannel pulse

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral</th>
<th>Size, (\mu\text{m})</th>
<th>Method</th>
<th>U, ppm</th>
<th>Th, ppm</th>
<th>K,%</th>
<th>DR, Gyr/kyr</th>
<th>P, Gyr</th>
<th>Disks</th>
<th>(\Delta) Age, ka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakua1-TL</td>
<td>Qtz</td>
<td>90–150</td>
<td>SAR</td>
<td>2.6 ± 0.7</td>
<td>12.1 ± 2.3</td>
<td>2.4 ± 0.12</td>
<td>3.5 ± 0.3</td>
<td>67.5 ± 14.6</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Pakua2-TL</td>
<td>Feld</td>
<td>4–11</td>
<td>MAR</td>
<td>2.8 ± 1</td>
<td>17.6 ± 3.7</td>
<td>2.79 ± 0.14</td>
<td>5.1 ± 0.6</td>
<td>649 ± 214</td>
<td>26</td>
<td>0.040</td>
</tr>
<tr>
<td>Pakua3-TL</td>
<td>Feld</td>
<td>4–11</td>
<td>MAR</td>
<td>3.2 ± 0.9</td>
<td>12.1 ± 3.3</td>
<td>1.8 ± 0.09</td>
<td>3.9 ± 0.5</td>
<td>558.7 ± 169</td>
<td>28</td>
<td>0.040</td>
</tr>
<tr>
<td>Pakua4-TL</td>
<td>Qtz</td>
<td>90–150</td>
<td>SAR</td>
<td>2.1 ± 0.4</td>
<td>12.1 ± 1.3</td>
<td>1.7 ± 0.08</td>
<td>2.8 ± 0.2</td>
<td>81.5 ± 1.4</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Pakua5-TL</td>
<td>Feld</td>
<td>4–11</td>
<td>MAR</td>
<td>4.1 ± 0.6</td>
<td>12.4 ± 2</td>
<td>2.4 ± 0.12</td>
<td>4.5 ± 0.4</td>
<td>1523 ± 266</td>
<td>28</td>
<td>0.030</td>
</tr>
<tr>
<td>AYS15(b)</td>
<td>Qtz</td>
<td>150–210</td>
<td>SAR</td>
<td>1.3 ± 1</td>
<td>16 ± 3.6</td>
<td>1.9 ± 0.1</td>
<td>2.9 ± 4</td>
<td>112 ± 7.7</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>AYS-16(b)</td>
<td>Qtz</td>
<td>125–150</td>
<td>SAR</td>
<td>3.1 ± 0.1</td>
<td>10.6 ± 0.4</td>
<td>1.5 ± 0.08</td>
<td>2.6 ± 0.2</td>
<td>50.3 ± 2.9</td>
<td>33</td>
<td>-</td>
</tr>
</tbody>
</table>

\(a\) Luminescence signal of quartz (Qtz) or feldspar (Feld) grains were analyzed using single aliquot regeneration (SAR) or multiple aliquot regeneration (MAR) protocols. Moisture content was assumed to be 15 ± 5%. Dose rates (DR) are calculated based on the environmental irradiation. In the case of the SAR method, average of all obtained paleodoses (P) has been considered for the samples, except for AYS15 and AYS16.

\(b\) Minimum ages were considered because of the scattered distribution obtained for their dose rates. Mean ages for AYS15 and AYS16 are 38 ± 6 and 24 ± 7 ka, too old in view of other independent constraints (Figures 5 and 22).
Appendix D: Uncertainties on Finite Shortening and on Model Parameters

D1. Uncertainty on Total Shortening

[55] Total shortening across northern and southern Pakuashan is determined by the excess area method [Epard and Groshong, 1993]. Surfaces defined by deformed levels are determined by tracing reflectors across the entire anticline. To assess uncertainties on their areas, we use the uncertainties estimated for the dip angles retrieved from seismic profiles (Appendix A). Minimum and maximum areas around each one of the previous surfaces are estimated, by considering minimum and maximum possible dip values within each dip domain. The probability that observed dips are at their maximum (or minimum) values within each domain all along a reflector is expected to be negligible, so that this approach maximizes uncertainties on the excess areas. The weighted least squares regression of Lybanon [1984] (Appendix B), is used to assess the finite shortening and the uncertainty on this value from equation (5) (Figure 16). Uncertainties provided by this regression correspond to a 95% confidence level.

D2. Uncertainties on Model Parameters

[56] The parameter \( \lambda(z) \) is retrieved for different depths from the observed fold width (Figure 15) and equation (1). Uncertainty on the fold width is considered to result from the error on the fold axis direction. The uncertainty on \( \lambda(z) \) is then calculated by partial derivatives.

[57] To determine \( \alpha_i \) for each domain \( i \), dips acquired during fold growth are first calculated by correcting observed tilts from the inferred initial geometry (Figure 15). From equation (3), \( [\tan(\beta)(1 - \lambda(z)D)]/D \) is calculated, taking into account the finite shortening across the fold and the \( \lambda(z) \) values corresponding to the initial depth \( z \) of the reflector. Uncertainties on \( [\tan(\beta)(1 - \lambda(z)D)]/D \) are calculated from errors on the input parameters using partial derivatives. A weighted least squares linear regression forced to the origin (Appendix B) is then applied to the observed trend of \( [\tan(\beta)(1 - \lambda(z)D)]/D \) as a function of \( z \) in order to retrieve the \( \alpha_i \) values for each domain as well as their respective uncertainties. The confidence level may be considered here to be of 95%, although partial derivatives maximize uncertainties.

Appendix E: Uncertainty on the Fold Model

[58] A “mean” model, considering the mean value of total shortening, of parameters \( \alpha_i \) and \( \lambda(z) \), and of initial dip angles is first obtained. To account for the effect of the uncertainties of these parameters on the fold model, we also consider extreme models, combining maximum and minimum possible values, respectively, of all parameters. Finally, extreme and mean models are combined together and subsequently compared to the observations from the seismic profiles to test the validity of the fold model. Uncertainties on the dips predicted by the model are derived from this analysis and correspond to the standard deviation of the distribution of the misfit between observations and predictions. They are most probably maximized since the probability that all parameters are all at their extreme values is small. Corresponding confidence levels are thus over 95%.

Appendix F: Errors on Shortening Rates

[59] Errors on cumulative shortening calculated from equations (3) or (4) are estimated based on the partial derivatives of these equations. In the case of the growth strata, a weighted least squares regression after Lybanon, [1984] (Appendix B) is used to assess shortening rates, as well as their uncertainties, from cumulative shortening as a function of age. Since in our approach most uncertainties are overestimated by partial derivatives or by considering extreme cases, our final uncertainties on the ages of deformation inception and on the shortening rate most probably represent a confidence level over 95%.

Acknowledgments. The Trimble 5700 RTK GPS system was provided by the CEA (France), and the laser distance meter was provided by Academia Sinica (Taiwan). We wish to thank O. Beyssac, J.-C. Hu, and R.-F. Chen for their valuable help in the field, as well as E. Thauvin for his help with the RTK GPS system. We are also indebted to A. Tyagi for his help in measuring the AYS series of OSL samples. Our study of southern Pakuashan was also made possible by J.-H. Hung, who kindly provided the data from the TC-1 well. This manuscript benefited from discussions with J. Suppe, S. Dominguez, and J. Malavieille and from the thoughtful and constructive reviews by J. Shaw, D. Burbank, and the Associate Editor, J. Dolan. These investigations were initiated thanks to a grant to J.P.A. from CNRS/INSU (France). This study was also partly funded by the Gordon and Betty Moore Foundation. This is Caltech Tectonics Observatory contribution 66.

References


Cattin, R., A. Loevenbruck, and X. Le Pichon (2004), Why does the co-seismic slip of the 1999 Chi-Chi (Taiwan) earthquake increase progressively northward on the plane of rupture?, Tectonophysics, 386, 67–80.


Y.-G. Chen and M. Jaiswal, Department of Geosciences, National Taiwan University, P.O. Box 13-318, Taipei 106, Taiwan.
M. Simoes, Géosciences Rennes, CNRS-Université Rennes 1, Campus Beaulieu, F-35042 Rennes, France. (martine.simoes@univ-rennes1.fr)
A. K. Singhvi, Planetary and Geosciences Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India.
C.-Y. Wang, Institute of Geophysics, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan.