Numerical Simulation of Slow Slip Triggered Tremor Migration and Rapid Tremor Reversals

Yingdi Luo (luoyd@caltech.edu), Jean-Paul Ampuero; Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125

I. Introduction
Slow-slip events (SSE) and non-volcanic tremors unveil a broad spectrum of earthquake behavior and offer a unique window into fault mechanics at the bottom of seismogenic zones. A hierarchy of migration patterns of tremors has been observed in the Cascadia subduction zone (Houston et al., 2011):

1. Large-scale, along-strike tremor propagation at about 50 km/day. Likely triggered by the migrating front of the slow slip event.
2. Rapid Tremor Reversals (RTRs): smaller-scale swarms migrating along-strike in the opposite direction, at about 100 km/day. Their origin is less obvious.
3. Along-dip streaky tremor swarms, migrating at about 1000 km/day (not addressed here).

II. Conceptual model
In an emergent view, the deep seismic/asismic/migration transition region of a fault has heterogeneous frictional properties and is composed of frictionally unstable patches (‘asperities’) embedded in a more frictionally stable fault matrix.

III. Model

A. Rate and State Friction

\[r = \max(1, \min(r + \Delta t), \min(r + \Delta t, \sigma)) \]

- \(r \) : fault shear stress
- \(\sigma \) : effective normal stress
- \(r^* \) : reference value of the friction coefficient
- \(\sigma^* \) : reference value of the slip velocity
- \(V \) : sliding velocity
- \(a \) : constitutive parameter: direct effect
- \(b \) : constitutive parameter: evolution effect
- \(d \) : characteristic slip distance
- \(\dot{\varepsilon} \) : state variable

Response of a spring-block system to an external transient loading (a Gaussian pulse). The slip law is assumed. Each row has a characteristic pulse duration: \(T_{\text{rec}} > 100 \), \(T_{\text{rec}} > 50 \) and \(T_{\text{rec}} > 10 \) (top to bottom). Each column has different stiffness: sub-critical, critical and super-critical (left to right). The response highly depends on the ratio of recurrence time \(T_{\text{rec}} \) to pulse duration \(T \).

B. Friction Law with cut-off Velocity

Because we focus on modeling tremor migration, we conveniently generate the underlying SSE by adopting a friction law with transition from velocity-weakening to strengthening. We adjust model parameters to obtain a SSE propagation speed of ~10 km/day.

\[\mu = \min(\mu^0, \max(\mu^0 - \alpha \cdot \log(1 + \beta \cdot \dot{\varepsilon}), 0)) \]

- \(\mu \) : cut-off velocity of direct effect
- \(\mu^0 \) : cut-off velocity of evolution effect
- Velocity weakening to strengthening transition

IV. Numerical simulations
We conduct 20 numerical simulations of heterogeneous rate-and-state faults under the quasi-dynamic approximation with a spectral Boundary Element Method. We first simulate several SSE cycles on a homogeneous fault. We then add a collection of small asperities defined as patches of velocity-weakening friction (no velocity cut-off, to allow seismic slip) with shorter \(D_c \) and larger and at bove than their surroundings.

V. Future work
- Identify the factors controlling the propagation speed and distance of RTRs
- Examine the interaction between tremor swarms and SSEs
- Review the effects of complex fault geometry

VI. References
1. P. Ampuero, and A. M. Rubin (2009), Earthquake subduction on rate-and-state faults: Aging and slip events, JGR, 113, B00A12
2. Kao, H. et al. (2009), Stable and unstable fault areas on the San Andreas Fault system, JGR, 113, B00A12
3. Kao, H. et al. (2009), Stable and unstable fault areas on the San Andreas Fault system, JGR, 113, B00A12
5. Houston et al. (2015), Rapid Tremor Reversals in Cascadia generated by a waveguide plate interface, Nature Geoscience 8, 529–534