Role of seismogenic depth and background stress on physical limits of earthquake rupture across fault step-overs

Kangchen Bai1, Jean Paul Ampuero1

1Seismological Laboratory, California Institute of Technology

Key Points:

• Critical step-over jump distance is controlled by seismogenic depth and background stress

• Critical step-over distance is slightly dependent on nucleation size

• Earthquakes may jump wider step-overs on faults with thicker seismogenic zone or operating at higher stress

Corresponding author: Kangchen Bai, kbai@caltech.edu
Abstract

Earthquakes can rupture geometrically complex fault systems by breaching fault step-overs. Quantifying the likelihood of rupture jump across step-overs is important to evaluate earthquake hazard and to understand the interactions between dynamic rupture and fault growth processes. Here we investigate the role of seismogenic depth and background stress on physical limits of earthquake rupture across fault step-overs. Our computational and theoretical study is focused on the canonical case of two parallel strike-slip faults with large aspect ratio, uniform pre-stress and uniform friction properties. We conduct a systematic set of 3D dynamic rupture simulations in which we vary the seismogenic depth, step-over distance and initial stresses. We find that the maximum step-over distance H_c that a rupture can jump depends on seismogenic depth W and strength excess to stress drop ratio S as $H_c \propto W/S^n$, where $n = 2$ when $H_c/W < 0.2$ (or $S > 1.5$) and $n = 1$ otherwise. The critical nucleation size, largely controlled by frictional properties, has a second-order effect on H_c. Rupture on the secondary fault is mainly triggered by the stopping phase emanated from the rupture end on the primary fault. Asymptotic analysis of the peak amplitude of stopping phases sheds light on the mechanical origin of the relations between H_c, W and S, and leads to the scaling regime with $n = 1$ in far field and $n = 2$ in near field. The results suggest that strike-slip earthquakes on faults with large seismogenic depth or operating at high shear stresses can jump wider step-overs than observed so far in continental inter-plate earthquakes.

1 Introduction

Earthquakes often occur on fault with complex geometries involving multiple fault strands whose surface traces are separated by step-overs. These discontinuities can act as barriers that arrest earthquakes ruptures, but this is not always the case: ruptures can also jump across step-overs. For example, the 2013 M_w 7.7 Balochistan earthquake rupture stopped at a dilational step-over at its southern end [Zhou et al., 2016], whereas the 1992 M_w 7.3 Landers earthquake breached four major step-overs within the Eastern California Shear Zone [Sieh et al., 1993].

Understanding the role of step-overs on rupture propagation and arrest has both practical and fundamental significance. An important mechanism by which earthquakes become large is by breaking multiple fault segments, despite the structural barriers that separate them [Meng et al., 2012; Hamling et al., 2017; Sieh et al., 1993]. In seismic hazard analysis, the likelihood of multiple fault segments rupturing during a single earthquake is a crucial
consideration to determine the largest expected magnitude in a complex fault system [Field et al., 2014]. An important goal is to establish quantitative relations between the efficiency of step-over jumps and the geometrical properties of step-overs. Efforts to achieve this goal empirically have yielded seminal results [e.g. Wesnousky, 2006] but are ultimately limited by the small number of earthquakes with sufficient rupture and fault observations. Mechanical models can offer a complementary support to such efforts, for instance by providing mechanically-motivated functional forms to guide the development of empirical relations and physically expected bounds to supplement empirical models. Step-overs and other geometrical features of faults are also the subject of basic research, especially on the relation between the short time scales of dynamic rupture and the long time scales of fault growth.

The dynamic generation of damage and branching during earthquake rupture contributes to the long-term evolution of fault zones [Ampuero and Mao, 2017]. One mechanism of fault growth operates by coalescence of multiple fault segments during which the step-overs are breached [de Joussineau and Aydin, 2007]. If the distance between two faults is small and the segments interact strongly throughout their earthquake cycles, simultaneous modeling of the whole fault system is required.

Continental strike-slip earthquakes rarely manage to jump step-overs larger than about 5 km [Wesnousky, 2006]. This has been also observed in dynamic rupture simulations, even if the second fault segment is very close to failure [Harris and Day, 1999]. A critical step-over distance $H_c = 5$ km has been incorporated in seismic hazard assessment models such as the The Third Uniform California Earthquake Rupture Forecast [Field et al., 2014].

However, some recent earthquakes may have jumped step-overs much wider than 5 km. During the 2012 M_w 8.6 Indian Ocean earthquake, the rupture propagated through a complicated orthogonal conjugate fault system. In the late part of this earthquake, back-projection rupture imaging revealed a step-over jump as wide as 20 km [Meng et al., 2012]. The 2016 M_w 7.8 Kaikoura, New Zealand earthquake jumped through a compressional step-over of 15 km [Hamling et al., 2017] which was not considered as a possible scenario in previous hazard analysis for the region. A common feature of both events is their particularly large rupture depth extent, compared to other strike-slip events. The Indian Ocean earthquake has a centroid depth beyond 25 km; its rupture penetrated into the upper mantle. These observations call for a re-examination of the factors affecting the critical step-over distance. Existing models of the efficiency of step-over jumps do not account for the role of key observable physical parameters, such as the seismogenic depth, and poorly constrained frictional param-
eters, such as fracture energy. With ongoing advance in earthquake data gathering and source inversion methods, this information can be obtained and help generating a more accurate model.

In this computational and theoretical study, we determine key physical parameters that control the critical step-over distance in large strike-slip ruptures using numerical simulations and asymptotic analysis. We keep the model as simple as possible so that we can use fracture mechanics arguments to gain physical insight on the numerical modeling results.

2 Model

We consider two vertical, parallel strike-slip faults in a 3D homogeneous isotropic elastic half-space, as depicted in Figure 1. The elastic medium has density 2700 kg/m3, P wave speed 6000 km/s and S wave speed 3464 km/s. The faults have length L, seismic width W, step-over distance H (distance between the two fault traces), and overlapping length D. In our simulations, L and D are fixed while other parameters are variable. We focus on large-magnitude strike-slip earthquakes whose rupture area have large aspect ratio L/W. The regional stress is assumed homogeneous, resulting in a uniform normal stress of $\sigma_0 = 150$ MPa on the faults and uniform shear stress τ_0 whose value is a model parameter. The faults are governed by the linear slip-weakening friction law, with uniform static and dynamic friction coefficients $\mu_s = 0.677$ and $\mu_d = 0.373$, respectively, and critical slip weakening distance $D_c = 0.5$ m.

Surface-induced supershear rupture [Kaneko et al., 2008] and nucleation at the free surface on the secondary fault [Harris and Day, 1999] can substantially increase H_c for supershear ruptures [Hu et al., 2016, see also section 3.2]. These two phenomena have been reported in numerical simulations but not in earthquake observations. They are thus suppressed in this study by setting a negative stress drop in the top 1 km of both faults.

Earthquake ruptures with large aspect ratio eventually turn into pulse-like ruptures because of the no-slip constraint at the bottom of the seismogenic zone [Day, 1982; Ampuero and Mao, 2017]. Their rise time is controlled by stopping phases emanating from the lower limit of the seismogenic layer. Their rupture fronts tend to become straight and vertical at large propagation distance. When such a vertical rupture front suddenly changes speed, especially when it hits the vertical edge of the fault and comes to a stop, it generates stronger coherent high-frequency radiation than for instance a circular front [Madariaga et al., 2006].
The short rise time of a pulse-like rupture further enhances its high-frequency radiation. Hence the large aspect ratio of large ruptures exacerbates the dynamic stresses that promote step-over jumps. However, theoretically, when L/W is so large that the rupture becomes a stationary pulse, the radiation strength of the stopping phase no longer depends on rupture length [Day, 1982]. Here we are interested in upper bounds on critical step-over distance, hence we consider the limiting case of very elongated ruptures and adopt an artificial nucleation procedure that favors straightness of the rupture front.

To facilitate the application of our numerical model to different scales, we introduce the following dimensionless quantities. The ratio of strength excess to stress drop,

$$S = \frac{\mu_s \sigma_0 - \tau_0}{\tau_0 - \mu_d \sigma_0},$$

(1)

quantifies the relative fault pre-stress level. The seismogenic depth is characterized by the ratio W/L_c, where the length

$$L_c = \frac{\mu D_c}{\sigma_0 (\mu_s - \mu_d)}$$

(2)

is representative of the static process zone size, where shear modulus $\mu = 32.4$ GPa. We fix the ratio L/L_c to a large enough value to allow the rupture on the primary fault evolve towards an almost stationary speed. Increasing the rupture acceleration distance has been previously found to increase the critical step-over distance [Hu et al., 2016]. This can be explained by the fact that before reaching stationary propagation, the peak slip rate of the slipping pulse keeps increasing [Day, 1982], making the potential stopping phase stronger as fault length increases.

Ruptures are initiated by an artificial nucleation procedure intended to minimize the curvature of the primary rupture front, which facilitates step-over jumps. We reduce the friction coefficient on the primary fault abruptly, down to the dynamic friction level, simultaneously inside a vertical band extending from top to bottom of the seismogenic zone. The horizontal width of this initiation band is set to 20 km by trial and error to make sure that the rupture with the largest S ratio considered here ($S = 4$) can successfully nucleate on the primary fault. Alternatively, guidelines to set the size of the initiation zone can be derived from those developed for nucleation by over-stressed regions by Galis et al. [2017].

The step-over geometry is characterized by the dimensionless step-over distance H/W and overlap distance D/L. A previous study has shown a positive relation between the critical step-over distance H_c and D [Harris and Day, 1999]. We fix D/L to a large value (0.4)
to ensure that the secondary fault is fully exposed to the stress change caused by the primary
rupture. Our choices of values for $L/L_c = 140$ and $D/L = 0.4$ favor rupture across the
step-over and are intended to yield an upper bound estimate of H_c/W.

Dimensional analysis of this basic problem indicates a relation between dimensionless
quantities of the form

$$H_c/W = f(S, W/L_c)$$

Here we conduct a systematic set of 3D dynamic rupture simulations to characterize the yet
unknown function f. We scan a range of values of H/W and W/L_c by varying W and H
while holding L_c fixed. For each pair $(H/W, W/L_c)$ we use binary search to find the maxi-
mum S ratio (S_c) that allows the step-over to be breached.

The main focus of this study is on sub-Rayleigh ruptures (propagating slower than
Rayleigh wave speed). For super-shear ruptures (propagating faster than S wave speed), we
did not fully explore the parameter space. Super-shear ruptures account for a small amount
of events in earthquake observations and their dynamics can be more complicated. We never-
thless considered several super-shear cases for comparison with their sub-Rayleigh counter-
parts.

We use the spectral element method software SPECFEM3D [Komatitsch and Tromp,
1999]. To enable this work, we extended the dynamic rupture solver implemented by Galvez
et al. [2014] to take advantage of GPU acceleration [Komatitsch et al., 2010]. We use 5-th
order spectral elements. Far from the fault we use a coarse mesh with element size of 800 m.
Within 10 km of the fault plane we refine the mesh down to an element size of 266 m on the
fault, equivalent to an average node spacing of 66.5 m. The mesh resolves well the static pro-
cess zone size $\approx L_c$ (355 m).

3 Simulation results

3.1 Effects of seismogenic depth W and strength excess ratio S on critical step-
over distance

We vary W from 5 to 20 km with increments of 2.5 km and vary H from 0.5 to 3.5
km with increments of 0.5 km. This range of values covers the representative range of most
strike-slip earthquakes. For each (W, H) pair, the maximum S value enabling step-over jumps
is determined by binary search with an accuracy of 0.1 MPa. The resulting critical S_c values
for all W and H are shown in Figure 2. The complete set of simulations includes both ruptures that propagated at sub-Rayleigh speed and at super-shear speed on the first fault. For a given (W, H) pair, as S is decreased the following regimes are observed in most cases: sub-Rayleigh rupture without step-over jump, sub-Rayleigh with jump, super-shear without jump, and finally super-shear with jump. We then report in Figure 2 the two maximum S values that yield a step-over jump in sub-Rayleigh ruptures (circles) and in super-shear ruptures (diamonds), respectively. There are also cases where one regime is missing and the sequence at decreasing S is: sub-Rayleigh without jump, super-shear without jump, and super-shear with jump. We did not determine S_c for these cases (open circles in Figure 2).

A characteristic pattern is found in the step-over jump behavior of sub-Rayleigh ruptures. The S_c values for the sub-Rayleigh cases are plotted separately in Figure 3. The contours of $S_c(W, H)$ are roughly linear, pointing to a relation of the form $H/W \approx f(S_c)$. Note that the black lines are not the computed contours, but contours predicted by a relation developed in the next paragraph; they nevertheless serve here as a qualitative visual guide. The slope of the contours decreases with S_c, indicating that f is a decreasing function. This result can be re-interpreted as a relation between the critical step-over distance H_c and W for a fixed S value: $H_c/W \approx f(S)$, in which the ratio H_c/W is lower for larger S.

Further quantitative examination of the simulation results reveals the dependence of H_c/W on S and L_c/W. Based on the results presented in Figure 2 and following the dimensional analysis leading to equation 3, we present in Figure 4 a non-dimensional log-log plot of the ratio H_c/W as a function of S. The ratio L_c/W is indicated by colors and the rupture speed regime is distinguished by symbols. In compressional step-overs, we find that H_c/W is roughly proportional to $1/S^2$ when S is large. At low S the sub-Rayleigh and super-shear cases are clearly separated: for a given S value, sub-Rayleigh ruptures have larger H_c than super-shear ruptures. The super-shear subset has H_c/W roughly proportional to $1/S$, and the sub-shear subset shows a hint of a similar trend at the lowest S values. The boundary between the $1/S^2$ and $1/S$ regimes is close to $S = 1.5$ and $H_c/W = 0.2$. In dilational step-overs, the $H_c/W \propto 1/S^2$ regime is also very clear, even within the super-shear subset, but not the $1/S$ regime. There are fewer cases in our dilational step-over simulations where rupture breaches a step-over wider than $0.2 W$, so we cannot discard that the inverse linear regime exists outside the parameter ranges we explored. Also in dilational step-overs, for a given S value sub-Rayleigh ruptures have larger H_c than super-shear ruptures. The simulation results at small H_c/W or large S in both compressional and dilational step-overs are adequately rep-
resented by the relation $H_c/W = 0.3/S^2$ (dashed lines in Figure 4). There is a slightly larger H_c/W on compressional step-overs than on dilational ones, which is consistent with previous findings [Hu et al., 2016].

3.2 Effect of L_c on critical step-over distance and rupture speed

The ratio L_c/W modulates the relation between H_c/W and S such that for a given S, larger L_c/W gives smaller H_c/W (Figure 4). The mechanism underlying this observation is that, because the process zone scale L_c is also related to a critical nucleation size [Uenishi and Rice, 2003; Ampuero et al., 2002], a smaller L_c/W facilitates rupture nucleation on the secondary fault.

Apart from a nucleation effect, L_c also affects H_c by affecting the terminal rupture speed on the primary fault. The terminal speed of sub-Rayleigh ruptures on the primary fault depends on Lc/W and S. More specifically, it depends on the ratio of fracture energy $G_c = \frac{1}{2} \sigma_0 (\mu_s - \mu_d) D_c$ to static energy release rate $G_0 = \frac{W D^2 (\tau_0 - \mu_d \sigma_0)}{2 \mu}$, which is proportional to $(1 + S)^2 L_c/W$. The smaller the ratio G_c/G_0 is, the larger the terminal rupture speed can be.

In Figure 5 we show that the relation between V_r and G_c/G_0 obtained in our simulations is consistent with the theoretical expectation from fracture dynamics [Weng and Yang, 2017].

A more prominent role of L_c on step-over jumps is related to its effect on super-shear transitions. The critical S ratio necessary for super-shear transition increases as W/L_c increases, consistently with results of previous 3D studies [Madariaga and Olsen, 2000; Dunham, 2007]. Previous numerical simulations have shown that super-shear ruptures can breach a wider step-over than sub-Rayleigh ruptures. In particular, when the S ratio decreases to around 0.45, a step-over wider than 10 km can be breached by ruptures that have undergone super-shear transition assisted by free-surface effects [Hu et al., 2016]. On the contrary, in our simulations with free surface effect suppressed by a shallow layer of negative stress drop, super-shear ruptures have shorter H_c than sub-Rayleigh ruptures at given S (Figure 4). We observed that during super-shear transition, the rupture front splits into a super-shear rupture front and a sub-Rayleigh rupture front following the Burridge-Andrews mechanism [Andrews, 1976]. These two fronts are weaker than the original sub-Rayleigh front, hence less efficient at inducing step-over jumps (Figure 6). For most values of H, we find two critical S ratios for step-over jump, a larger S_c for sub-Rayleigh ruptures and a smaller one for super-shear ruptures. However, there are cases in the dilational step-overs where the step-over jump
happens only when rupture on the first fault is super-shear. In these cases, there is only one critical S ratio, the one corresponding to super-shear ruptures (open circles in Figure 2).

3.3 Effect of dynamic stresses

In principle, both static and dynamic stress transfer from the primary rupture to the secondary fault can contribute to step-over jumps. However, 2D simulations by Oglesby [2008] indicate that dynamic stresses, especially high frequency stress peaks, are the dominant factor controlling the step-over jump behavior. He observed that the critical step-over distance depends on how sharp the initial stresses taper at the end of the primary fault, which determines the abruptness of rupture arrest and consequently the amplitude of stopping phases.

In 3D, this effect of stopping phases can be more complicated because the shape of the rupture front can vary depending on S, W and nucleation processes, generating multiple high frequency radiation phases when rupture fronts hit the boundary of the seismogenic region. The analysis of the effect of stopping phases in 3D is made more tractable here by forcing the rupture fronts to be straight, reaching the lateral end of the primary fault almost simultaneously at all depths (section 2).

To demonstrate the predominance of dynamic stresses over static stresses, we show that dynamic stresses are much larger than static stresses in our long rupture models, in which the terminal rupture speed on the first fault is usually close to the Rayleigh wave speed. We select a pair of compressional and dilational step-over simulations with the following parameter settings: $S = 1.27$, $H = 1.5$ km and $W = 15$ km (Figure 7). Static stress analysis would suggest that a dilational step-over is easier to breach because the second fault is unclamped (subjected to normal stress reduction) by rupture of the primary fault. However, when we consider the dynamic stresses, results are much more complex. In the compressional step-over, static normal stress increases in the second fault but a high frequency peak in dynamic stress brings it to failure. In the dilational step-over example, the static normal stress on the second fault decreases, lowering its strength and thus favoring the step-over jump, but the high frequency dynamic stress peak is not sufficient to bring the fault to failure. In both cases, static stresses alone are not sufficient to breach the step-over, because of their relatively small amplitude compared with dynamic stresses. A slightly larger compressional step-over jump than a dilational one is also observed in most of the examples presented by Hu et al. [2016], especially in the sub-Rayleigh rupture cases. This implies that the step-over distance H_c can be underestimated if only static stress are considered, especially for a compressional step-over.
Moreover, dynamic Coulomb stresses carried by stopping phases have a different angular pattern than static Coulomb stresses. This pattern is determined by rupture speed and will be discussed in section 4 and Appendix B.

4 Theoretical relation between H_c/W and S

The theoretical relation between H_c/W and S cannot be derived analytically in 3D dynamic rupture problems. However, asymptotic 2D analysis provides a good approximation to the problem. When a straight rupture front hits the lateral edge of the seismogenic zone producing a line source of length W, the stopping phase it radiates can be approximated as a cylindrical wave in the near field ($0.01 < r/W < 0.1$), whose amplitude decays as $\frac{1}{\sqrt{r}}$, and as a spherical wave in the far field ($r/W > 1$), decaying as $\frac{1}{r}$ (Figure 8). Relations between the wave amplitude in these two distance ranges, fault geometry and dynamic rupture properties are derived in Appendix A. The relations show that the maximum distance at which the Coulomb failure threshold can be reached is proportional to W/S^2 in the near field and proportional to W/S in the far field. This asymptotic analysis of maximum Coulomb failure distance under cylindrical and spherical wave approximations roughly explains what we have observed in the simulations: $H_c/W \propto 1/S^2$ when $H_c/W < 0.1$ (near field) and $H_c/W \propto 1/S$ when $H_c/W > 0.2$ (far field).

The previous analysis of peak dynamic stresses provides a necessary condition for step-over jump to happen. Lozos et al. [2014] found qualitatively in 2D simulations an inverse relation between H_c and the critical nucleation size. Treating the step-over jump problem as a static stress triggering problem, they proposed that Coulomb failure has to be reached within an area larger than the critical nucleation size on the secondary fault to successfully initiate rupture. Here, we further investigate the problem by analysis of the nucleation criterion for 3D ruptures. The stopping phase of the primary rupture induces a stress pulse travelling at S wave speed on the secondary fault. This pulse has a large aspect ratio, it extends vertically across the whole seismogenic depth but has a short width in the along-strike direction. Galis et al. [2017] found that if the nucleation zone has an aspect ratio greater than 10, spontaneous runaway rupture happens only if its shortest edge length exceeds a critical nucleation size. If $S \leq 3$, this critical nucleation size is independent of S and is equal to the critical nucleation length by Uenishi and Rice [2003], which is close to L_c. If $S > 3$ the nucleation condition does not depend on the aspect ratio, it is equivalent to a critical nucleation area rather than a critical length. However, the very low initial stress when $S > 3$
correspond to cases where $H_c < 0.03W$ in our simulations. Such small step-overs are usually ignored in fault trace mapping and hazard analysis. Thus, for cases of interest, the critical nucleation size L_c of Uenishi and Rice [2003] is an appropriate criterion. Therefore, increasing L_c tends to decrease H_c (Figure 4 color coded by L_c/W). This effect is weak when L_c/W is small. Our previous analysis based on the maximum distance for Coulomb failure to occur hence provides an upper bound on H_c.

5 Discussions

5.1 Comparison to empirical observations of H_c

From the analysis of simulation results, we find that the critical step-over distance H_c depends primarily on seismogenic width W and strength excess ratio S. In addition, it is slightly modulated by the nucleation size L_c, which is explained by the effect of nucleation on the secondary fault by dynamic stresses carried by stopping phases.

Our modeling results are in first-order agreement with empirical estimates of critical step-over distance. The ratio of shear stress to effective normal stress on the San Andreas fault and other major inter-plate faults has been inferred to be around 0.2 to 0.3 [Noda et al., 2009]. When $S > 1.5$, our simulation results for both compressional and dilational step-overs are well represented by $H_c/W \approx 0.3/S^2$, and hence $H_c/W < 0.2$. For a typical $W = 15$ km for continental strike-slip faults we expect $H_c < 3$ km, which agrees with previous observations [Wesnousky, 2006] and numerical simulations [Harris and Day, 1999]. The above arguments demonstrate that our new model is consistent with the previous "5 km recipe" when applied to typical continental inter-plate strike-slip faults.

However, our results indicate that empirical criteria for step-over jumps may not be readily applied to faults with different W and S under different tectonic settings, such as oceanic and intra-plate strike-slip earthquakes. Our theoretical results provide a more accurate estimate of H_c for given S and W. For a specific region, a range of S values can be constrained by information on regional stresses and fault geometry. The stress state of a fault can be estimated by projecting the regional stress tensor onto the fault plane. The seismogenic depth W can be estimated by the termination depth of background seismicity or by geodetic inversion of locking depth. The nucleation size L_c is a more uncertain parameter, which may be inferred from seismological observations of large earthquakes [Mikumo et al., 2003; Fukuyama et al., 2003], but has only a second-order effect on H_c.
5.2 Effect of a thick seismogenic layer

One important factor that challenges the “5 km criterion” is the dependence of H_c on the thickness of the seismogenic layer, W. There are several reasons for variability of seismogenic thickness. The first controlling factor is the geothermal gradient, which controls the brittle to ductile transition of the crust and the deep seismic to aseismic transition of faults. Cooling of an old oceanic crust increases this transition depth and makes the seismogenic layer thicker, which is consistent with a large H_c in the 2012 Indian Ocean earthquake [Meng et al., 2012]. Subduction of an oceanic crust greatly decreases temperature around it, which may deepen the brittle-ductile transition on crustal faults in the over-riding plate. This effect has been proposed to explain a rupture depth of 25 km in the 2016 M_w 7.8 Kaikoura earthquake inferred from geodetic data [Hamling et al., 2017]. For the same thermal reason, we expect intra-plate earthquakes to have a thicker seismogenic layer [Copley et al., 2014] and hence a larger H_c than inter-plate earthquakes.

Dynamic processes that promote large rupture width can favor wider step-over jumps. Ruptures can propagate below the depth at which ruptures can nucleate. Our theory actually relates the critical step-over distance to rupture width, more fundamentally than to seismogenic width. Hence larger step-over distances are expected for large earthquake ruptures that penetrate below the seismogenic depth, for instance due to thermal weakening processes [Jiang and Lapusta, 2016].

Our results on strike-slip faults have implications also for other faulting types. In dip-slip faults, the seismogenic width is larger, $W = h/sin(\alpha)$ where h is the seismogenic depth and α the dip angle. We hence expect H_c to be larger for faults with shallower dip angle α. In addition, the step-over distance conventionally defined in map-view is larger than the fault distance defined here in the normal direction to the fault plane. Biasi and Wesnousky [2016] found a larger critical step-over distance in dip-slip faults, which can be around 12 km.

Relations between fault system geometry and seismogenic depth may complicate the relation between H_c and W. Zuza et al. [2017] found that the spacing between strike-slip faults is also proportional to W. This means that although H_c is larger in areas with thicker seismogenic layer, the probability of a fault step-over jump is not necessarily larger, because of the sparsity of closely spaced secondary segments.
5.3 Step-over jumps with lower initial stresses

Our model indicates that ruptures have trouble breaching step-overs at low background shear stress (large S ratio yields small H_c/W). On natural faults, we expect $S \gg 1$ to be typical because stress drop estimates are of a few MPa on average and strength drop can be several 10 MPa in the absence of excessive fault zone fluid overpressure. Faults operating at low background stress may have to breach step-overs by localizing slip into a more connected fault system (with narrower step-overs).

In addition to a thicker seismogenic layer [Copley et al., 2014], intra-plate earthquakes have average stress drop significantly larger than inter-plate earthquakes [Allmann and Shearer, 2009; Scholz et al., 1986]. Moreover, Kato [2009] suggests that, in contrast to inter-plate faults, the loading of intra-plate faults is dominated by regional plate stressing rather than by aseismic slip in deeper extensions of the fault, hence the loading of the seismogenic zone tends to be more spatially uniform than on inter-plate faults. These arguments imply that intra-plate faults can operate at overall smaller S ratio than inter-plate faults, thus allowing for wider step-over jumps during earthquakes.

The possibility of step-over jumps can be affected by relations between seismogenic depth and the long-term average stress at which a fault operates. In earthquake cycle models of faults loaded by deep creep [Kato, 2012], it is found that as W increases the average stress decreases. Fracture mechanics analysis of this problem leads to a relation that can be formulated as $S + 1 \approx \sqrt{W/L_c}$. Together with the relation $H_c/W \propto 1/S^2$ for large S we obtain $H_c \propto L_c$. For small S this model requires $W \approx L_c$ and, considering the relation $H_c/W \propto 1/S$, we obtain $H_c \propto L_c/S$. Hence, a certain class of earthquake cycle models predicts a closer relation between critical step-over distance and nucleation size than suggested by our single-earthquake dynamic rupture models.

5.4 A procedure to assess the potential for step-over jumps

While our new model incorporates parameters such as W, S and L_c, it is based on simplifying assumptions that may not be appropriate for all step-over problems. For example, we assume the fault strands to be parallel, which is not always the case. As described in Poliakov et al. [2002], the stress field near a propagating mode II rupture promotes secondary ruptures at an angle with the primary fault that depends on the background stress tensor and on rupture speed. Parsons et al. [2012] proposed to estimate the probability of multi-segment
earthquakes by calculating the static Coulomb stress perturbation induced by one segment on all the surrounding segments. This method neglects dynamic stresses and can lead to substantial underestimation of jumping probability, as shown in section 3.3. We propose the following procedure to assess the potential for a step-over jump in a specific case scenario:

1. Run a dynamic rupture simulation on the primary fault.
2. Record the dynamic stress on all secondary faults.
3. Determine if failure is reached over a contiguous zone larger than nucleation size, for given set of initial stresses.

A conservative estimate is obtained by assuming a very small nucleation size. In step 3, the initial stresses on the secondary faults can be varied over a range constrained by independent considerations, without the need to repeat step 1.

5.5 Potential limitations

Here we summarize the main limitations of our model and suggest potential improvements or clarify their effects on the estimations of H_c.

We assumed that the initial fault stress results from a homogeneous regional stress field. In reality, fault stresses can be heterogeneous at a step-over due to stress concentrations caused by past earthquakes near fault tips. Others have considered different uniform stresses on the two fault segments [Harris and Day, 1999]. Revisiting our derivation assuming the stress states on the two faults are different, we find that our H_c prediction equation remains the same after simply replacing S with the ratio S' between the strength excess of the second fault and the stress drop of the first fault. Due to residual stresses left by previous ruptures, S' can be significantly smaller near the step-over than our previous estimate of $S > 1$. This allows for larger H_c and reconciles our simulation results with typical observed step-over jumps in the km range even when S is high far from the step-over. The role of stress heterogeneity on step-over jumps can also be addressed through earthquake cycle modeling [Duan and Oglesby, 2006; Shaw and Dieterich, 2007; Yıkılmaz et al., 2015]. The fundamental results assuming homogeneous initial stress presented here can help understand the outcomes of such more complete models. For example, we expect initial shear stress to be mostly concentrated near the deep edge of the seismogenic zone due to creep on the deeper portion of the fault (see, e.g., figure 1 of [Kato, 2012]). If this stress concentration is substantial, we
should observe a tendency for ruptures on secondary faults to initiate in the deepest part of
the seismogenic zone. However, the coarse resolution and small number of finite fault inver-
sion results of earthquakes with step-over jumps [Wald and Heaton, 1994; Yue et al., 2012;
Field et al., 2014; Hamling et al., 2017] do not allow to determine if such a tendency occurs
in nature.

We assumed a rectangular rupture area and a vertical rupture front. In reality, rupture
area and rupture front can have complicated geometries due to fault geometry and stress
heterogeneities, which can generate multiple strong phases. In our model, the rupture front
forms a perfect line source and is a worst-case scenario because it generates the strongest
constructive interference. Our simulation results thus serve as an upper limit estimation of
the amplitude of stopping phase radiation. We assume rupture termination to be very sharp,
as if the rupture encountered a steep increase of fracture energy or a sharp decrease in shear
stress. In reality rupture arrest can be gradual, for instance if rupture is stopped by an area
of smoothly decreasing initial stress [Oglesby, 2008], which leads to weaker stress concen-
tration and stopping phases and hence less efficient step-over jumps. In these regards, our
model provides an upper bound on H_c, which is useful for a conservative hazard analysis.

Step-over jumps can be facilitated by structural features such as intermediate fault seg-
ments [Lozos et al., 2015] or linking faults [Oglesby, 2005]. An important case is a flower
structure, in which two fault segments that are separate at the surface merge into a single
fault at some depth. In this case, dynamic rupture simulations by Aochi [2003] showed that
ruptures break through the step-over by taking advantage of the deep linkage, regardless of
how wide the gap is at the surface, unless the deep rupture pathway is too narrow due to a
linkage depth too close to the bottom of the seismogenic zone. The step-over distance at the
surface is proportional to the linkage depth if the average dip angle of the fault branches is
controlled by the internal frictional angle of the crust [Naylor et al., 1986; Di Bucci et al.,
2006]. Thus flower structures could also lead to critical step-over distances H_c proportional
to W. Distinguishing between the deeply linked faults interpretation and the parallel faults
interpretation of the relation $H_c \propto W$ needs further investigation of the geometry of active
faults at depth.

We assumed a linear slip weakening friction law, i.e. fault strength decreases linearly
with accumulated slip. A non-linear slip-weakening law with steeper weakening at small slip
facilitates nucleation [Dunham, 2007] and hence can increase H_c. To simplify the discus-
sion, we focus our attention on cases with $S < 3$, for which the critical nucleation size has a weak dependence on S. For $S > 3$, the critical nucleation size increases rapidly with S, and the critical step-over distance could be even smaller than predicted by extrapolating the results presented in Figure 4.

6 Conclusions

The present computational and theoretical study of earthquake rupture on faults with step-overs provides fundamental insights on the physical factors controlling the limits on the step-over distance that a rupture can jump. By conducting a systematic set of 3D dynamic rupture simulations on strike-slip faults with uniform pre-stress and friction properties, we have established theoretical dependencies of the critical step-over jump distance H_c on seismogenic depth W, pre-stress level S (the ratio of strength excess to stress drop) and critical nucleation size L_c (the ratio of shear modulus to slip-weakening rate). An understanding of the mechanical origins of these dependencies is obtained by analytical arguments based on fracture mechanics. A critical step-over jump distance model of the form

$$H_c \propto W/S^n$$

is established where $n = 2$ in the near-field regime when $H_c < 0.2W$ (or $S > 1.5$) and $n = 1$ in the far-field regime when $H_c > 0.2W$ (or $S < 1.5$). Nucleation size has a second order effect on critical step-over distance; increasing L_c decreases H_c mildly.

We estimate the critical step-over distance to be a fraction of the seismogenic depth. This theoretical estimate is of the same order of magnitude as the maximum step-over distances derived empirically for continental strike-slip faults. Our model in particular predicts that earthquakes with exceptionally large rupture depth extension can breach proportionally wide step-overs. This prediction is consistent with observations of earthquakes in regions of thick oceanic lithosphere for which ruptures breaching step-overs wider than 10 km have been reported, such as the 2012 $M_{w} 8.6$ Indian Ocean earthquake [Meng et al., 2012] and the 2016 $M_{w} 7.8$ Kaikoura earthquake [Hamling et al., 2017]. Our results also suggest that the maximum step-over distance widely used in hazard analysis may not be conservative enough for faults that operate at relatively high average stress and have thicker seismogenic zone, for instance intra-plate faults.
A: Critical step-over distance in the near-field and far-field regimes

We develop an upper bound on H_c based on asymptotic stress analysis near a singular crack tip, ignoring the role of cohesive zone size L_c. The stress field at close distance r and azimuth θ (counter-clockwise, relative to the rupture direction) from a running crack tip is

$$\sigma_{ij}(r, \theta) = \sigma_{0,ij}(r, \theta) + \frac{K_d \Sigma_{d,ij}(\theta)}{\sqrt{r}},$$

(A.1)

where K_d is the dynamic stress intensity factor which is a function of rupture speed and $\Sigma_{d,ij}(\theta)$ is an angular pattern. Theory [Madariaga, 1977, 1983] and numerical simulations [Madariaga et al., 2006] show that this sudden change of stress intensity factor causes radiation of strong high frequency phases. If arrest is simultaneous along the terminal edge of the first fault, the stopping phase is radiated by a line source of finite length W. Hence, in the near field ($r/W \ll 1$) the stopping phase is approximately a cylindrical wave but in the far field ($r/W \gg 1$) it is a spherical wave. This creates two different amplitude-distance decay regimes: the stopping phase amplitude is proportional to $1/\sqrt{r}$ when $r/W \ll 1$ and to $1/r$ when $r/W \gg 1$. The stress field near the crack tip (at distance r and azimuth θ from the first fault tip) when there is a sudden arrest of the rupture can be decomposed into three parts: 1) the background homogeneous stress $\sigma_{0,ij}$; 2) the static stress field caused by a the running rupture right before the rupture arrest $\frac{K_d \Sigma_{d,ij}(\theta)}{\sqrt{r}}$; 3) The stopping phase caused by the simultaneous arrest of the rupture along the lateral edge. Only the third part is time dependent and we refer to Madariaga [1977] equation (36) which is the solution of S wave stopping phase for 2D in-plane shear rupture. We omit other complicated wave phenomenon while only keeping the S wave part of the stopping phase which we observed to be the major contributing factor. We compact all the other terms of Madariaga [1977] eq(36) into $\Sigma_{sp,ij}(V_r, \theta)$ while highlight the dependence of part 3) on K_s and r

$$\sigma_{ij}(r, \theta, t) = \sigma_{0,ij} + \frac{K_d \Sigma_{d,ij}(\theta)}{\sqrt{r}} + \frac{K_s \Sigma_{sp,ij}(V_r, \theta)}{\sqrt{r}} H(t - r/V_s),$$

(A.2)

and in the far field

$$\sigma_{ij}(r, \theta, t) = \sigma_{0,ij} + \frac{C_s \Pi_{sp,ij}(V_r, \theta)}{r} H(t - r/V_s),$$

(A.3)

$\Sigma_{sp,ij}(V_r, \theta)$ and $\Pi_{sp,ij}(V_r, \theta)$ are near field and far field angular patterns. We have observed the rupture jump to occur after the pass of the stopping phase which means $H(t - r/V_s) = 1$. Since the dynamic wave field is much larger than the static component at large distance, we have omitted the static component in the far field expression. For a 3D rectangular crack with large aspect ratio ($L/W > 0.25$), K at the short edge is very close to that of a mode II crack
in 2D with length \(W \) [Noda and Kihara, 2002]:

\[
\kappa_{ij}(V_r, \theta) = \frac{K_d \Sigma_{d,ij}(\theta) + K_s \Sigma_{sp,ij}(V_r, \theta)}{\Delta \tau \sqrt{W}} \quad (A.4)
\]

and

\[
\xi_{ij}(V_r, \theta) = \frac{C_s \Pi_{sp,ij}(V_r, \theta)}{W \Delta \tau} \quad (A.5)
\]

These quantities are dimensionless and have no dependencies on \(W \) and \(S \) ratio. After inserting these dimensionless quantities, the stress on the second fault is

\[
\sigma_{ij}(r, \theta) = \sigma_{0,ij} + \frac{\kappa_{ij}(V_r, \theta)}{\sqrt{r/W}} \quad (A.6)
\]

in the near field and

\[
\sigma_{ij}(r, \theta) = \sigma_{0,ij} + \frac{\xi_{ij}(V_r, \theta)}{r/W} \quad (A.7)
\]

in the far field. A necessary condition for rupture on the second fault is that the shear stress

\[
\tau(r_c, \theta_c) > \mu_s \sigma(r_c, \theta_c) \quad (A.8)
\]

where fault shear stress is \(\tau = \sigma_{xy} \) and normal stress is \(\sigma = \sigma_{yy} \). To satisfy this necessary condition with maximum step-over distance

\[
H_c = r_c \sin(\theta_c) \quad (A.9)
\]

we need to find \(r_c \) and \(\theta_c \) that maximize \(r_c \sin(\theta_c) \) under the constraint A.8. Solving this optimization problem is difficult if \(\theta_c \) depends on \(S \). However, we have observed that \(\theta_c \) is almost constant, with value near 30 degrees, in all our compressional step-over simulations. In dilational step-overs, for most cases with \(W > 10 \) km nucleation also occurs at a fixed azimuth of around −120 degree in the backward direction (Figure 10), which is consistent with previous 2D simulations [Harris and Day, 1999]. There are exceptions when \(W < 10 \) km in which the backward nucleation fails to develop into a sustained rupture (Figure 9). Assuming a fixed \(\theta_c \), the problem is reduced to finding the largest \(H_c \) that satisfies the following relations:

\[
\tau_0 + \Delta \tau \frac{\kappa_{xy}(V_r, \theta_c)(\sqrt{\sin(\theta_c)})}{\sqrt{H_c/W}} > \mu_s \left(\sigma_0 + \frac{\kappa_{xy}(V_r, \theta_c)(\sqrt{\sin(\theta_c)})}{\sqrt{H_c/W}} \right) \quad (A.10)
\]

in the near field and

\[
\tau_0 + \Delta \tau \frac{\xi_{xy}(V_r, \theta_c) \sin(\theta_c)}{H_c/W} > \mu_s \left(\sigma_0 + \frac{\xi_{xy}(V_r, \theta_c) \sin(\theta_c)}{H_c/W} \right) \quad (A.11)
\]

in the far field. The solution is

\[
H_c/W = \frac{(\mu_s \kappa_{xy}(V_r, \theta_c) - \kappa_{xy}(V_r, \theta_c))^2 \sin(\theta_c)}{S^2} \quad (A.12)
\]
in the near field and

$$H_{c}/W = \frac{(\mu_s \xi_{yy}(V_r, \theta_c) - \xi_{xy}(V_r, \theta_c)) \sin(\theta_c)}{S}$$ \hspace{1cm} (A.13)$$

in the far field.

Rupture speed is very similar in all our examples (Figure 5). Within that range, $V_r/V_s > 0.8$, rupture speed does not affect significantly the radiation amplitude in the azimuths we are interested in, as shown in appendix B. Hence HC/W is not significantly affected by V_r.

B: Effect of V_r on the amplitude of stopping phases

The first motion velocity amplitude of the S wave stopping phase of a Mode II crack is

(equation (36) of [Madariaga, 1977]):

$$\frac{\partial u^s(r, \theta, t)}{\partial t} = \frac{K_0}{\mu} V_r \frac{1}{\sqrt{r}} F_s(V_r, \theta) H(t - r/V_s)$$ \hspace{1cm} (B.1)$$

where

$$F_s(V_r, \theta) = \frac{\kappa^3 \cos(2\theta) \cos(\theta/2)}{2(\kappa^2 - 1)(1 - V_r/V_s \cos(\theta)) (q_R + \kappa \cos(\theta)) S(\cos(\theta)/V_s)}$$ \hspace{1cm} (B.2)$$

and q_R is the Rayleigh function which depends on V_r and $\kappa = V_p/V_s$. So

$$u^s_\theta(r, \psi, t) = \frac{K_0}{\mu} V_r \frac{1}{\sqrt{r}} F_s(V_r, \theta) R(t - r/V_s)$$ \hspace{1cm} (B.3)$$

where $R(t) = \max(0, t)$ is the ramp function. Then

$$\frac{\partial u^s_\theta}{\partial r} = -\frac{1}{V_s} \frac{\partial u^s_\theta}{\partial t} - \frac{1}{2} \frac{K_0}{\mu} V_r \frac{1}{r^{3/2}} F_s(V_r, \theta) R(t - r/V_s)$$ \hspace{1cm} (B.4)$$

$$\frac{\partial u^s_\theta}{\partial \theta} = \frac{K_0}{\mu} V_r \frac{1}{\sqrt{r}} F_s(V_r, \theta) R(t - r/V_s)$$ \hspace{1cm} (B.5)$$

At $t = r/V_s$, we have $\frac{\partial u^s_\theta}{\partial r} = -\frac{1}{V_s^{3/2}} \frac{\partial u^s_\theta}{\partial t}$ and $\frac{\partial u^s_\theta}{\partial r} = 0$. We convert the strain tensor from cylindrical coordinates to Cartesian coordinates, and by introducing Lame’s parameter λ and μ, stress can be calculated as:

$$\tau = \sigma_{xy} = \mu \cos(2\theta) \frac{\partial u_\theta}{\partial r}$$ \hspace{1cm} (B.6)$$

$$\sigma = \sigma_{yy} = \mu \sin(2\theta) \frac{\partial u_\theta}{\partial r}$$ \hspace{1cm} (B.7)$$

The only dependence of $\tau - \mu \sigma$ on V_r is in the expression of $\partial u_\theta/\partial r$, via the term

$$f(V_r, \theta) = \frac{V_r/V_s}{(1 - V_r/V_s \cos(\theta)) (q_R + \cos(\theta))}$$ \hspace{1cm} (B.8)$$
We plot the function $f(V_r, \theta)$ for a range of rupture speeds representative of our simulations and for a broad range of azimuths. In our simulations, $\theta = 30^\circ$ and $\theta = 120^\circ$ are the angles θ_c at which we observe compressional and dilational step-over jumps, respectively (Figure 11).

Acknowledgments

This work was funded by NSF CAREER award EAR-1015698 and by the Southern California Earthquake Center, which is funded by National Science Foundation Cooperative Agreement EAR-8208103462 and U.S. Geological Survey Cooperative Agreement G12AC20038.

References

Aochi, H. (2003), The role of fault continuity at depth in numerical simulations of earthquake rupture.

Di Bucci, D., A. Ravaglia, S. Seno, G. Toscani, U. Fracassi, and G. Valensise (2006), Seismo-

tectonics of the southern Apennines and Adriatic foreland: Insights on active regional

tC4015.

Duan, B., and D. D. Oglesby (2006), Heterogeneous fault stresses from previous earthquakes
and the effect on dynamics of parallel strike-slip faults, *Journal of Geophysical Research:
Solid Earth*, 111(B5).

Dunham, E. M. (2007), Conditions governing the occurrence of supershear ruptures under

son, K. M. Johnson, T. H. Jordan, C. Madden, et al. (2014), Uniform California Earth-
quake Rupture Forecast, version 3 (UCERF3) the time-independent model, *Bulletin of the
Seismological Society of America*, 104(3), 1122–1180.

Fukuyama, E., T. Mikumo, and K. B. Olsen (2003), Estimation of the critical slip-weakening
distance: Theoretical background, *Bulletin of the Seismological Society of America*, 93(4),
1835–1840.

initiation of sustained slip-weakening ruptures by localized stresses, *Geophysical Journal
International*, 200(2), 890–909.

Galis, M., J.-P. Ampuero, P. M. Mai, and F. Cappa (2017), Theoretical estimates of magni-
tudes of earthquakes induced by pore-pressure perturbations with large aspect ratios, in
EGU General Assembly Conference Abstracts, vol. 19, p. 6111.

earthquake rupture modelled with an unstructured 3-D spectral element method applied to

Hamling, I. J., S. Hreinsdóttir, K. Clark, J. Elliott, C. Liang, E. Fielding, N. Litchfield, P. Vil-

Hu, F., Z. Zhang, and X. Chen (2016), Investigation of earthquake jump distance for strike-
slip step overs based on 3D dynamic rupture simulations in an elastic half-space, *Journal

Meng, L., J.-P. Ampuero, J. Stock, Z. Duputel, Y. Luo, and V. Tsai (2012), Earthquake in a maze: Compressional rupture branching during the 2012 Mw 8.6 Sumatra earthquake,

Figure 1. Canonical model of two parallel, vertical strike-slip faults with a step-over. Top: 3D view. The step-over distance is H and seismogenic depth is W. Bottom: Side view. Nucleation is enforced on the primary fault in a rectangular area that covers the whole seismogenic depth. A shallow zone of negative stress drop is prescribed.
Figure 2. Critical values of the ratio of strength excess to stress drop, S, that allows ruptures to jump (a) compressional and (b) dilational step-overs with different seismogenic depth W and step-over distance H. Each symbol is the result of a suite of simulations with fixed H and W, but varying S until the maximum S value required for step-over jump is found. This critical S value is reported by colors. Two different symbols indicate the rupture speed regime on the first fault: sub-Rayleigh (circles) or super-shear (diamonds). Open circles are cases in which only super-shear ruptures can jump through the step-over; we did not determine the critical S for those cases.

Figure 3. Critical step-over distance H_c for sub-Rayleigh ruptures as a function of seismogenic depth W and strength excess ratio S for (a) compressional and (b) dilational step-overs. The solid lines are the contours of critical S predicted by a relation $H_c/W = 0.3/S^2$ inspired by our near-field theory and constrained by our simulation data.
Figure 4. Relation between critical step-over distance normalized by seismogenic depth, H_c/W, and strength excess S in (a) compressional and (b) dilational step-overs. Simulations span a range of normalized nucleation sizes L_c/W (indicated by colors). Cases with sub-shear and super-shear ruptures on the second fault are distinguished by symbols (see legend). For compressional step-overs, the simulation results are consistent with an inverse quadratic relation $H_c/W \propto 1/S^2$ at large $S > 2$ and an inverse linear relation $H_c/W \propto 1/S$ at small $S < 1.5$. The linear regime has two branches corresponding to sub-Rayleigh and super-shear ruptures on the second fault. For dilational step-overs, the results are consistent with the quadratic relation and also display sub-Rayleigh and super-shear branches. In both compressional and dilational step-overs, sub-Rayleigh ruptures have larger H_c than super-shear ruptures at given S. Small values of L_c/W favor super-shear. For a given S value, faults with smaller L_c/W can jump wider step-overs.
Figure 5. Final rupture speed on the first fault as a function of the ratio between fracture energy G_c and static energy release rate G_0. Rupture speed V_r is normalized by shear wave speed V_s. The blue solid line is the theoretical curve for 2D mode II cracks with constant rupture speed. A constant factor of 1.5 is introduced to account for 3D effects, such as curvature of the rupture front.
Figure 6. Comparison of dynamic stresses between a sub-Rayleigh rupture (left) and a super-shear rupture (right). (a) Map view of the two examples. Both have the same fault system geometry but different S ratio ($S = 1.27$ for the sub-Rayleigh case and $S = 0.64$ for the super-shear case). An array of receivers (red) is placed along the second fault near the end point of the first fault, between $x = 17$ km and 27 km and at a depth of 14 km. (b) Transient shear stress $\tau(t)$ (solid green) and static strength $\mu_s \sigma(t)$ (blue) on the second fault of the sub-Rayleigh case (left) and super-shear case (right). Each panel corresponds to a different location along the second fault (x position indicated by label). Stopping phases generated by sub-Rayleigh and super-shear fronts are indicated by red and yellow lines, respectively. The super-shear rupture did not breach the step-over because splitting of the rupture front weakens the peak amplitude of the stopping phase.
Figure 7. Comparison of dynamic stresses between compressional step-over (left) and dilational step-over (right). (a) Map view of the two examples. An array of receivers (red) is placed along the second fault near the end point of the first fault, between $x = 17$ km and 27 km and at a depth of 14 km. (b) Transient shear stress $\tau(t)$ (solid green) and static strength $\mu_s \sigma(t)$ (blue) on the second fault of the compressional step-over (left) and dilational step-over (right). Each panel corresponds to a different location along the second fault (x position indicated by label). Dashed green curves are shear stresses computed in separate simulations assuming the secondary fault remains locked.
Figure 8. Peak ground velocity in the x direction at 90 degree azimuth from the end of the first fault, as a function of distance to the end of the first fault normalized by seismogenic depth. Three cases with different seismogenic depth W are considered (see legend).

Figure 9. Nucleation in the backward direction for a dilational stepover with $W = 20$ km. Rupture time contours on (a) primary fault and (b) secondary fault. The fault overlap section is $0 < x < 20$ km.
Figure 10. Dilational step-over jump with three nucleation attempts. Nucleation in the backward direction with respect to the primary fault’s end point. Seismogenic depth is $W = 20$ km.
Figure 11. The dependence of angular pattern on rupture speed V_r at different azimuths. The dependence is smooth and weak within the range of azimuths and speeds we are interested in.