Formation of Jupiter and Conditions for Accretion of the Galilean Satellites

P. R. Estrada, and I. Mosqueira
SETI Institute

J. J. Lissauer, G. D’Angelo, and D. P. Cruikshank
NASA Ames Research Center

Abstract

We present an overview of the formation of Jupiter and its associated circumplanetary disk. Jupiter forms via a combination of planetesimal accretion and gravitational accumulation of gas from the surrounding solar nebula. The formation of the circumjovian gaseous disk, or subnebula, straddles the transitional stage between runaway gas accretion and Jupiter’s eventual isolation from the circumsolar disk. This isolation, which effectively signals the termination of Jupiter’s accretion, takes place as Jupiter opens a deep gas gap in the solar nebula, or the solar nebula gas dissipates. The gap-opening stage is relevant to subnebula formation because the radial extent of the circumjovian disk is determined by the specific angular momentum of gas that enters Jupiter’s gravitational sphere of influence. Prior to opening a well-formed, deep gap in the circumsolar disk, Jupiter accretes low specific angular momentum gas from its vicinity, resulting in the formation of a rotationally-supported compact disk whose size is comparable to the radial extent of the Galilean satellites. This process may allocate similar amounts of angular momentum to the planet and the disk, leading to the formation of an \textit{ab-initio} massive disk compared to the mass of the satellites.

As Jupiter approaches its final mass and the gas gap deepens, a more extended, less massive disk forms because the gas inflow, which must come from increasingly farther away from the planet’s semimajor axis, has high specific angular momentum. Thus, the size of the circumplanetary gas disk upon inflow is dependent on whether or not a gap is present. We describe the conditions for accretion of the Galilean satellites, including the timescales for their formation and mechanisms for their survival, all within the context of key constraints for satellite formation models. The environment in which the regular satellites form is tied to the timescale for circumplanetary disk dispersal, which depends on the nature and persistence of turbulence. In the case that subnebula turbulence decays as gas inflow wanes, we present a novel mechanism for satellite survival involving gap opening by the largest satellites. On the other hand, assuming that sustained turbulence drives subnebula evolution on a short timescale compared to the satellite formation timescale, we review a model that emphasizes collisional processes to explain satellite observations. We briefly discuss the mechanisms by which solids may be delivered to the circumplanetary disk. At the tail end of Jupiter’s accretion, most of the mass in solids resides in planetesimals of size > 1 km; however, planetesimals in Jupiter’s feeding zone undergo a period of intense collisional grinding, placing a significant amount of mass in fragments < 1 km. Inelastic or gravitational collisions within Jupiter’s gravitational sphere of influence allow for the mass contained in these planetesimal fragments to be delivered to the circumplanetary disk either through direct collisional/gravitational capture, or via ablation through the circumjovian gas disk. We expect that planetesimal delivery mechanisms likely provide the bulk of material for satellite accretion.
1. INTRODUCTION

The prograde, low inclination orbits and close spacing of the regular satellites of the four giant planets indicate that they formed within a circumplanetary disk around their parent planet. The fact that all of the giant planets of our Solar System harbor families of regular satellites suggests that satellite formation may be a natural, if not inevitable, consequence of giant planet formation. Thus to understand the origins of the Jovian satellites, we must understand the formation of Jupiter and its circumplanetary disk.

Observations provide some basic constraints on Jupiter’s origin. Jupiter must have formed prior to the dissipation of the solar nebula because H and He (the planet’s primary constituents) do not condense at any location in the protoplanetary disk; therefore these light elements were accumulated in gaseous form. Protoplanetary disks are observed to have lost essentially all of their gases in < 10^7 years (Meyer et al., 2007), e.g., by photoevaporation (Shu et al., 1993; Dullemond et al., 2007), implying that Jupiter must have completed its formation by then. A fundamental question of giant planet formation is whether Jupiter formed as a result of a gravitational instability that occurred in the solar nebula gas, or through accretion of a solid core that eventually became large enough to accumulate a gaseous envelope directly from the nebula. The evidence supports the latter formation scenario in which the early stage of planetary growth consists of the accumulation of planetesimals, in a manner analogous to the consensus treatment of terrestrial planets (Lissauer and Stevenson, 2007; cf. Durisen et al., 2007). The heavy element core grows sufficiently large (∼ 5 – 15 M⊕, where M⊕ = 5.976 × 10^27 g is an Earth mass) that it is able to accrete gas from the surrounding nebula (Hubickyj et al., 2005). The planet’s final mass is determined by either the opening of a gas gap in the protoplanetary disk, or the eventual dissipation of the solar nebula. Jupiter’s atmosphere is enhanced in condensible material by a factor of ∼ 3 – 4 times solar; Jupiter as a whole is enhanced in heavy elements by a factor of ∼ 3 – 8 compared to the Sun. These observations suggest that the Jovian subnebula could also have been enhanced in solids with respect to solar composition mixtures, though the way in which the disk was enhanced may differ from that of the planet (Sec. 4.2).

The enhancement of solids in Jupiter’s gaseous envelope, the composition of its core, and the source material that went into making the Jovian satellite system, likely reflect the composition of planetesimals that formed within its vicinity as well as farther from the Sun in the circumstellar disk. The composition of outer solar system bodies such as comets contain grains with a wide range of volatility (Brownlee et al., 2006; Zolensky et al., 2006). Dust samples from Comet 81P/Wild 2 brought to Earth by the Stardust space mission show a great diversity of high- and moderate-temperature minerals, in addition to organic material (e.g., Brownlee et al., 2006; Sandford et al., 2006). The implication from these observations is that there was a significant amount of radial mixing within the early solar nebula leading to the transport of high temperature minerals from the innermost regions of the solar nebula to beyond the orbit of Neptune. These high temperature minerals could have been transported through ballistic transport away from the midplane (Shu et al., 2001), or turbulent transport in the midplane (e.g., Scott and Krot, 2005; Cuzzi and Weidenschilling, 2006; Natta et al., 2007). Based on the “X-wind” model, Shu and colleagues predicted that there would be transport of CAIs (calcium-aluminum-rich inclusions) from near the Sun to the outer edge of the Solar System where Comet Wild 2 formed. Once transported, these minerals were incorporated into the first generation of planetesimals that went into making Jupiter and the outer planets. The presence of super-solar abundances of more volatile species such as argon (which requires very low temperatures to condense) in Jupiter’s atmosphere likely implies that, in addition to outward transport of high temperature material, there was also inward transport of highly volatile
material within solid bodies (e.g., Cuzzi and Zahnle, 2004; see Sec. 2.4). Similar migration might also have characterized circumplanetary nebulae at some stage in their evolution.

The formation of giant planet satellite systems has been treated as a poorly understood extension of giant planet formation (see, however, early work by Coradini et al., 1981; 1982). Thanks in great part to the success of the Voyager and Galileo missions, the Jovian satellite system has been studied extensively over the last three decades; the emphasis has been on the Galilean satellites Io, Europa, Ganymede, and Callisto. The cosmochemical and dynamical properties of the Jovian satellites may provide important clues about the late and/or post-accretional stages of Jupiter’s formation (Pollack and Reynolds, 1974; Mosqueira and Estrada, 2003a,b; Estrada and Mosqueira, 2006).

The abundances and the chemical forms of constituents observed in the Jovian satellite system are a diagnostic of their source material (i.e., either the source material condensed in the solar nebula or it was re-processed/condensed in the subnebula). However, interpretation of their cosmochemical properties is complicated because objects the size of the Galilean satellites could have been altered through extensive resurfacing due to differentiation, energetic impacts, and other forms of post-accretional processing. Callisto and Ganymede have mean densities of 1.83 and 1.94 g cm\(^{-3}\), respectively; each may consist of \(\sim 50\%\) rock, and \(\sim 50\%\) water-ice by mass, with Ganymede being slightly more rock rich (Sohl et al., 2002). In contrast, the solids component of solar composition material may be closer to \(\sim 60\%\) water-ice, \(\sim 40\%\) rock by mass, although the ice/rock ratio in the solar nebula is uncertain since it depends on the carbon speciation (Wong et al., 2008). This variation from solar composition may indicate that Callisto and Ganymede lost some of their total water inventory during their accretion. However, the total amount of water in Europa (3.01 g cm\(^{-3}\)) is only \(\sim 10\%\) by mass (Sohl et al., 2002). If the initial composition was like that of its outer neighbors, its current state requires additional mechanisms to explain its water loss. On the other hand, Io has a mean density of 3.53 g cm\(^{-3}\) consistent with rock. Thus, a key feature of the Galilean satellite system is the strong monotonic variation in ice fraction with distance from Jupiter.

Yet, despite this remarkable radial trend in water-ice fraction, the largest of the tiny moons orbiting interior to Io, Amalthea, has a density so low that even models for its composition that include high choices for its porosity require that water-ice be a major constituent (Anderson et al., 2005). The lack of mid-sized moons, which could provide additional clues to the relative abundances of rocky and icy material, complicates our attempts to understand the cosmochemical history of the Jovian system. Satellites in the Jovian system are found to contain evidence of hydrocarbons through their spectral signatures in the low-albedo surface materials (e.g., Hibbitts et al., 2000, 2003), and possibly CN-bearing materials (McCord et al., 1997). Whether these materials are intrinsic or extrinsic (e.g., a coating from impactors) in origin is not known. Contrast this with the Saturnian system, where the average density of the regular, icy satellites (\(\sim 1.3\) g cm\(^{-3}\)) may allow us to infer a non-solar composition or the presence of a significant amount of low-density hydrocarbons (e.g., Cruikshank et al., 2007a,b). A caveat is that the Saturnian mid-sized satellites may have been subject to disruptive collisions (see Sec. 4.5.1).

Is there accessible information on Ganymede and Callisto that can distinguish between material processed in the Jovian subnebula and material processed in the solar nebula? Both bodies show surface deposits of water ice (Calvin et al., 1995), and CO\(_2\) is found in small quantities on both these Galilean satellites (Hibbitts et al., 2001). While the surface water ice is probably native material, the CO\(_2\) is largely associated with the non-ice regions, and the CO\(_2\) spectral band is shifted in wavelength from its nominal position measured in the lab, indicating that it is probably complexed with other molecules (Chaban et al., 2006). The CO\(_2\) is likely to have been synthesized locally by the irradiation of water and a source of carbon, perhaps from micrometeorites. If the chemistry in the subnebula occurred at pressures in the range 10\(^{-3}\) to 10\(^{-4}\) bar as the gas cooled, CO gas
and water would have condensed early on (e.g., Fegley, 1993). The condensation of water may trap CO (Stevenson and Lunine, 1988) if the pressure is high, thus altering the C/O ratio in the remaining gas and affecting formation and growth of mineral grains. Unfortunately, molecules such as CH$_4$, NH$_3$, and native CO$_2$ and CO, which would give important clues to the conditions in which the Galilean satellites formed would help distinguish between gas-poor and gas-rich models, for example, are not detected on the surfaces of any of these bodies (though we note that CO and CH$_4$ are too volatile in general to be stable on the surfaces of these bodies).

Although one can think of Jupiter and its satellites as a “miniature Solar System”, there are several significant differences between accretion in a circumplanetary disk and the solar nebula. In the circumplanetary disk, thermodynamical properties, length scales, and dynamical times are quite different from their circumsolar analog. Most of these differences can be attributed to the fact that giant planet satellite systems are compact. For instance, the giant planets dominate the angular momentum budget of the Solar System; however, the analogy does not extend to the Jovian system where the majority of the system angular momentum resides in Jupiter’s spin. Moreover, dynamical times, which can influence a number of aspects of the accretion process, are orders of magnitude faster in circumplanetary disks than in the circumsolar disk (accretion of planets in the habitable zones of M dwarf stars are an intermediate case, Lissauer, 2007). As an example, Europa’s orbital period is $\sim 10^{-3}$ times that of Jupiter.

Over the last decade, there have been a number of global models of the Jovian satellite system designed to fit the observational constraints provided by the Voyager and Galileo missions (Mosqueira and Estrada, 2000, 2003a,b; Estrada, 2002; Canup and Ward, 2002, and others; Mousis and Gautier, 2004; Alibert et al., 2005a; Estrada and Mosqueira, 2006). Key constraints for models of the Galilean satellite system are as follows:

1. The mass and angular momentum contained within the Galilean satellites serve as firm constraints on the system. Aside from explaining the overall values, one must also address why there is so much mass and angular momentum in Callisto, yet no regular satellites outside its orbit.

2. The increase in ice fraction with distance from the planet for the Galilean satellites (a.k.a., compositional gradient) is often attributed to a temperature gradient imposed by the proto-Jupiter. However, it is debatable whether the compositions of Io and Europa, specifically, are primordial or altered by mechanisms (e.g., tidal heating, hypervelocity impacts) that would preferentially strip away volatiles. Moreover, Amalthea’s low density strongly suggests that water-ice is a major constituent of this inner, small satellite.

3. The moment of inertia of Callisto suggests a partially differentiated interior provided hydrostatic equilibrium is assumed (Anderson et al., 1998; 2001). This would imply that Callisto formed slowly ($\gtrsim 10^5$ years, Stevenson et al., 1986). However, it may be possible that a nonhydrostatic component in Callisto’s core could be large enough to mask complete differentiation (McKinnon, 1997).

4. The nearly constant mass ratio of the largest satellites of Jupiter and Saturn (and possibly Uranus) to their parent planet, $\mu \sim 10^{-4}$, suggests that there may be a truncation mechanism that affects satellite mass (Mosqueira and Estrada, 2003b).

This chapter is organized as follows. In Section 2, we present a detailed summary of the currently favored model for the formation of Jupiter. In Section 3, we discuss the formation of the circumjovian disk. In Section 4, we address the possible environments that arise for satellite formation during
the late stages of Jupiter’s accretion. We touch on the processes involved in the accretion of Europa and the other Galilean satellites, the methods of solids mass delivery, timescales for formation, and discuss the key constraints in more detail. In Section 5, we present a summary.

2. FORMATION OF JUPITER

Jupiter’s accretion is thought to occur in a protoplanetary disk with roughly the same elemental composition as the Sun; that is, primarily H and He with \(\sim 1 - 2\% \) of heavier elements. A lower bound on the mass of this solar disk of \(\sim 0.01 - 0.02 \, M_\odot \) (where \(M_\odot = 1.989 \times 10^{33} \, \text{g} \) is the mass of the Sun) has been derived from taking the condensed elemental fractions of the planets of the Solar System and reconstituting them with enough volatiles to make the composition solar. This is historically referred to as the “minimum mass solar nebula” (MMSN, Weidenschilling, 1977b; Hayashi, 1981). The radial distribution of solids is found by smearing the augmented mass of the planet over a region halfway to each neighboring planet. This approach yields a trend in surface density (by design, both in solids and gas) with semimajor axis, \(r \), of \(\Sigma \propto r^{-3/2} \) between Venus and Neptune (Weidenschilling, 1977b). The radial temperature of the photosphere of the solar nebula in these earlier models has been commonly taken to be that derived from assuming that the disk is optically thin (to its own emission), and dust grains are in radiative balance with the solar luminosity (\(T \propto r^{-1/2} \), Pollack et al., 1977; Hayashi, 1981). This temperature dependence is one that might be expected from a scenario in which most of the dust has accumulated into larger bodies.

In this picture, it is implicitly assumed that the planets form near their present locations. This means that planetary formation is characterized by “local growth” – that is, the planets accreted from the reservoir of gas and solids that condensed within their vicinity. In order to explain the abundances above solar of heavy volatile elements in Jupiter’s atmosphere, the distribution of solids at the location of Jupiter is often assumed to be that derived from assuming that the disk is optically thin (to its own emission), and dust grains are in radiative balance with the solar luminosity (\(T \propto r^{-1/2} \), Pollack et al., 1977; Hayashi, 1981). This temperature dependence is one that might be expected from a scenario in which most of the dust has accumulated into larger bodies.

Efforts to match the spectral energy distributions of circumstellar disks around T Tauri stars have spawned a number of alternative disk models that lead to different thermal disk structures (e.g., Kenyon and Hartmann, 1987; Chiang and Goldreich, 1997; Guada and Lin, 2007) that are considerably lower than what was assumed previously. Even with these lower temperature models, though, the implication is that Jupiter would need to have accreted material from much farther out in the circumsolar disk. If planetesimals migrated over such large distances, it suggests that the \(r^{-3/2} \) trend in surface density derived for the MMSN model is not a particularly useful constraint. These uncertainties in the most fundamental of disk properties underlie some of the reasons why the formation of giant planets remains one of the more scrutinized problems in planetary cosmogony today (see, e.g., recent reviews by Wuchterl et al., 2000; Hubbard et al., 2002; Lissauer and Stevenson, 2007).

Of the two formation models for giant planets that have received the most attention, the preponderance of evidence supports the formation of Jupiter via core nucleated accretion, which relies on a combination of planetesimal accretion and gravitational accumulation of gas. The alternative, the so-called gas instability model, would have Jupiter forming directly from the contraction of
gaseous clump produced through a gravitational instability in the protoplanetary disk. In the gas instability model, the formation of Jupiter is somewhat akin to star formation. Although numerical calculations have produced $\sim 1 \, M_J$ (where $M_J = 1.898 \times 10^{30}$ g is a Jupiter mass) clumps given sufficiently unstable disks (e.g., Boss, 2000; Mayer et al., 2002), these clumps do not form unless the disk is highly atypical (very massive, and/or very hot; Rafikov, 2005). Furthermore, unless there are processes that keep the disk unstable, weak gravitational instabilities lead to stabilization of the protoplanetary disk via the excitation of spiral density waves. These waves carry away angular momentum that spread the disk, lowering its surface density. Given the lack of observational support, along with theoretical arguments against the formation of Jupiter via fragmentation (Bodenheimer et al., 2000a; Cai et al., 2006), the gas instability model for Jupiter will not be considered in this chapter. For more in-depth discussions of the gas instability model, see Wuchterl et al. (2000), Lissauer and Stevenson (2007), and Durisen et al. (2007).

In the core nucleated accretion model (Pollack et al., 1996; Bodenheimer et al., 2000b; Hubickyj et al., 2005; Alibert et al., 2005b; Lissauer et al., 2009), Jupiter’s formation and evolution is thought to occur in the following sequence: (1) Dust particles in the solar nebula form planetesimals that accrete, resulting in a solid core surrounded by a low mass gaseous envelope. Initially, runaway accretion of solids occurs, and the accretion rate of gas is very slow. As the solid material in the planet’s feeding zone is depleted, the rate of solids accretion tapers off. The “feeding zone” is defined by the separation distance between a massive planet and a massless body on circular orbits such that they never experience a close encounter (Lissauer, 1995). The gas accretion rate steadily increases and eventually exceeds the accretion rate of solids. (2) Proto-Jupiter continues to grow as the gas accretes at a relatively constant rate. The mass of the solid core also increases, but at a slower rate. Eventually, the core and envelope masses become equal. (3) At this point, the rate of gas accretion increases in runaway fashion, and proto-Jupiter grows at a rapidly accelerating rate. The first three parts of the evolutionary sequence are referred to as the nebular stage, because the outer boundary of the protoplanetary envelope is in contact with the solar nebula, and the density and temperature at this interface are those of the nebula. (4) The gas accretion rate reaches a limiting value defined by the rate at which the nebula can transport gas to the vicinity of the planet (Lissauer et al., 2009). After this point, the equilibrium region of proto-Jupiter contracts, and gas accretes hydrodynamically into this equilibrium region. This part of the evolution is considered to be the transition stage. (5) Accretion is stopped by either the opening of a gap in the gas disk as a consequence of the tidal effect of Jupiter, accumulation of all nearby gas, or by dissipation of the nebula. Once accretion stops, the planet enters the isolation stage. Jupiter then contracts and cools to the present state at constant mass. In the following subsections, we present a more detailed summary of this formation sequence.

2.1. From Dust to Planetesimals

Sufficiently far away from the Sun where temperatures are low enough to allow for the condensation of solid material, grain growth begins with sticking of sub-micron sized dust, composed of surviving interstellar grains and condensates which formed within the protoplanetary disk. These small grains are dynamically coupled to the nebula gas, and collide at low (size-dependent) relative velocities that can be caused by a variety of mechanisms (Völkl et al., 1980; Weidenschilling, 1984; Nakagawa et al., 1986; Weidenschilling and Cuzzi, 1993; Ossenkopf, 1993; Cuzzi and Hogan, 2003; Ormel and Cuzzi, 2007). Low impact velocities (and thus low impact energies) tend to allow small particles to grow more efficiently because collisions can be completely inelastic (e.g., Wurm and Blum, 1998). However, as grains collide to form larger and larger agglomerates, the level of coupling between growing particles and the gas decreases, and particle velocities relative to both
other particles and the gas increases. As a result, larger particles begin to experience higher impact energies during interparticle collisions which can lead to fragmentation or erosion, rather than growth.

When the level of coupling between particles and the gas decreases, dust grains, which can be initially suspended at distances well above and below the solar nebula midplane, begin to gravitationally settle toward the midplane. As particles settle, they tend to grow. The time it takes for a particle to settle is a function of its size, and may be hundreds, thousands, or more orbital periods depending on ambient nebula conditions. Very small particles (e.g., sub-micron grains) have such long settling times relative to the lifetime of the gas disk that they are considered to be fully “entrained” in the gas. On the other end, some particles may become large enough that their settling time is comparable to their orbital period. Although technically these particles “couple” with the gas once per orbit, they are essentially viewed as the transition size from a regime in which particles collectively move with the gas, to a regime in which particles would prefer to move at the local Kepler orbital speed. These transitional particles are referred to as the “decoupling size”, and as they settle to the nebular midplane they continue to grow by sweeping up dust and rubble (Cuzzi et al., 1993; Weidenschilling, 1997).

The fact that particles tend to drift relative to the surrounding gas indicates that the gas component itself does not rotate at the local Kepler orbital velocity, \(v_K \). This is because the nebula gas is not supported against the Sun’s gravity by rotation alone. In a rotating frame there are three forces at work on a gas parcel in the nebula disk: a gravitational force radially directed toward the Sun; a centrifugal force directed radially outward from the nebula’s rotation axis; and (because the gas is not pressureless) an outward directed pressure gradient force that works to counter the effective gravity. The condition for equilibrium then requires that the nebula gas orbit at a velocity slightly less than \(v_K \). Solid objects, which might otherwise orbit at the local Keplerian orbital speed, are too dense to be supported by the pressure gradient, and are subject to a drag force that can systematically remove their angular momentum leading to orbital decay (Weidenschilling, 1977a).

Thus, a more formal definition of the decoupling size is the size at which the time needed for the gas drag force to dissipate a particles momentum relative to the gas (known as the “stopping time”) is similar to its orbital period. At Jupiter, this size is \(R \sim 1 \text{ m} \) for the canonical MMSN model (e.g., Cuzzi et al., 1993). Since decoupling-size particles encounter the strongest drag force, they tend to have the most rapid inward orbital migration. For example, such a particle (assuming no growth) would eventually spiral in to the Sun in \(\sim 10^4 - 10^5 \) years. This time is short compared to planetary accretion timescales (\(\gtrsim 10^6 - 10^7 \) years); but, as objects grow larger, the drag force on them decreases and the stopping times can become quite long. Kilometer-sized planetesimals are mostly unaffected by the gas due to their greater mass-to-surface-area ratio. Thus, getting from decoupling-size objects to the safety of relatively immobile (\(\gtrsim 1 \text{ km} \)) planetesimals is a key issue in planet formation.

Whether growth beyond the decoupling size happens depends on the turbulent viscosity \(\nu \) in the disk. In general, the dissipation of viscous energy leads to the transport of mass inwards, facilitating further accretion onto the central object. Angular momentum is transported outwards, causing the disk to spread (Sec. 4.1). The efficiency of the mechanism of angular momentum transport is most commonly characterized by a turbulent parameter \(\alpha \propto \nu \) (Shakura and Sunyaev, 1973). The level of turbulence is important because collisional velocities for decoupling-size objects can reach tens of meters per second in turbulence, which has more of a tendency to fragment them than to promote growth. This suggests that, while the incremental growth of sufficiently small grains and dust may take place irrespective of the level of nebula turbulence, successful growth past the decoupling size may require very low levels of turbulence (e.g., Youdin and Shu, 2002; Cuzzi
and Weidenschilling, 2004) which helps to overcome the two main obstacles for this critical size – collisional disruption and rapid orbital migration. Several mechanisms have been proposed in the literature to explain planetesimal growth under non-turbulent (laminar) conditions (Safronov, 1960; Goldreich and Ward, 1973; Weidenschilling, 1997; Sekiya, 1998; Youdin and Chiang, 2004). Yet, in spite of the difficulties associated with potentially destructive collisions, mechanisms that attempt to explain various stages of planetesimal formation under turbulent conditions have also recently been advanced (see Cuzzi and Weidenschilling, 2006; Cuzzi et al., 2007; Johansen et al., 2007).

One can argue on the basis of these works that growth under non-turbulent conditions provides a relatively straightforward pathway to planetesimal formation, while growth in the turbulent regime, if feasible, is a more complicated process with many stages. Indeed, the transition from agglomerates to planetesimals continues to provide the major stumbling block in planetary origins (Weidenschilling, 1997; 2002, 2004; Weidenschilling and Cuzzi, 1993; Stepinski and Valageas, 1997; Dullemond and Dominik, 2005; Cuzzi and Weidenschilling, 2006; Dominik et al., 2007).

2.2. Core Accretion

The initial stage of Jupiter’s formation entails the accretion of its solid core from the available reservoir of heliocentric planetesimals. Once planetesimals grow large enough, gravitational interactions and physical collisions between pairs of solid planetesimals provide the dominant perturbation of their basic Keplerian orbits. At this stage, effects that were more influential in the earlier stages of growth such as electromagnetic forces, collective gravitational effects, and in most circumstances gas drag, play minor roles. These planetesimals continue to agglomerate via pairwise mergers, with the rate of solid body accretion by a planetesimal or planetary embryo (basically a very large planetesimal) being determined by the size and mass of the planetesimal/planetary embryo, the surface density of planetesimals, and the distribution of planetesimal velocities relative to the accreting body.

The planetesimal velocity distribution is probably the most important factor that controls the growth rate of planetary embryos into the core of a giant planet. As larger objects accrete, gravitational scatterings and elastic collisions can convert the ordered relative motions of orbiting planetesimals (i.e., Keplerian shear) into random motions, and can “stir up” the planetesimal random velocities up to the escape speed from the largest planetesimals in the swarm (Safronov, 1969). The effects of this gravitational stirring, however, tend to be balanced by collisional damping, because inelastic collisions (and, for smaller objects, gas drag) can damp eccentricities and inclinations.

If one assumes that planetesimal pairwise collisions lead to perfect accretion, i.e., that all physical collisions are completely inelastic (fragmentation, erosion, and bouncing do not occur), this stage of growth can be initially quite rapid. With this assumption, the planetesimal accretion rate, \dot{M}_Z, is:

$$\dot{M}_Z = \pi R^2 \sigma_Z \Omega F_g,$$

(1)

where R is the radius of the accreting body, σ_Z is the surface density of solid planetesimals in the solar nebula, Ω is the orbital frequency at the location of the growing body, and F_g is the gravitational enhancement factor. The gravitational enhancement factor F_g arises from the ratio of the distance of close approach to the asymptotic unperturbed impact parameter, and in the 2-body approximation (ignoring the tidal effects of the Sun’s gravity) it is given by:

$$F_g = 1 + \left(\frac{v_e}{v}\right)^2.$$

(2)

Here, v_e is the escape velocity from the surface of the planetary embryo, and v is the velocity.
dispersion of the planetesimals being accreted. The evolution of the planetesimal size distribution is determined by F_g, which favors collisions between bodies having larger masses and smaller relative velocities. Moreover, they can accrete almost every planetesimal they collide with (i.e., the perfect accretion approximation works best for the largest bodies).

As the planetesimal size distribution evolves, planetesimals (and planetary embryos) may pass through different growth regimes. These growth regimes are sometimes characterized as either orderly or runaway. When the relative velocities between planetesimals is comparable to or larger than the escape velocity of the largest body, $v \gtrsim v_e$, the growth rate \dot{M}_Z is approximately proportional to R^2. This implies that the growth in radius is roughly constant (as can be easily derived from Eq. 1). Thus the evolutionary path of the planetesimals exhibits an orderly growth across the entire size distribution so that planetesimals containing most of the mass double their masses at least as rapidly as the largest particle. When the relative velocity is small, $v \ll v_e$, the gravitational enhancement factor $F_g \propto R^2$, and so the growth rate \dot{M}_Z is proportional to R^4. By virtue of its large, gravitationally enhanced cross-section, the most massive embryo doubles its mass faster than the smaller bodies do, and detaches itself from the mass distribution (Levin, 1978; Greenberg et al., 1978; Wetherill and Stewart, 1989; Ohtsuki et al., 2002).

Eventually the runaway body can grow so large (its F_g can exceed ~ 1000) that it transitions from dispersion-dominated growth to shear-dominated growth (Lissauer, 1987). This means that for these extremely low random velocities ($v \ll v_e$), the rate at which planetesimals encounter the growing planetary embryo is determined by the Keplerian shear in the planetesimal disk, and not by the random motions of the planetesimals. At this stage, larger embryos take longer to double in mass than do smaller ones, although embryos of all masses continue their runaway growth relative to surrounding planetesimals. This phase of rapid accretion of planetary embryos is known as oligarchic growth (Kokubo and Ida, 1998).

Rapid runaway or oligarchic accretion requires low random velocities, and thus small radial excursions of planetesimals. The planetary embryo’s feeding zone is therefore limited to the annulus of planetesimals which it can gravitationally perturb into embryo-crossing orbits. Rapid growth stops when a planetary embryo has accreted most of the planetesimals within its feeding zone. Thus, runaway/oligarchic growth is self-limiting in nature, which implies that massive planetary embryos form at regular intervals in semimajor axis. The agglomeration of these embryos into a small number of widely spaced bodies necessarily requires a stage characterized by large orbital eccentricities. The large velocities implied by these large eccentricities imply small collision cross-sections (Eq. 2) and hence long accretion times. Growth via binary (pairwise) collisions proceeds until the spacing of planetary orbits become dynamically isolated from one another, i.e., spacing sufficient for the configuration to be stable to gravitational interactions among the planets for the lifetime of the system (Safronov, 1969; Wetherill, 1990; Lissauer, 1993, 1995; Agnor et al., 1999; Laskar, 2000; Chambers, 2001).

For shear-dominated accretion, the mass at which such a planetary embryo becomes isolated from the surrounding circumsolar disk via runaway accretion is given by (Lissauer, 1993):

$$M_{iso} = \frac{(8\pi \sqrt{3}r^2\sigma Z)^{3/2}}{(3M_\odot)^{1/2}} \approx 1.6 \times 10^{25} \left(\frac{\sigma Z^{3/2}r_{AU}^3}{M_\odot}\right) \text{ g},$$

where r_{AU} is the distance from the Sun in astronomical units ($1\text{ AU} = 1.496 \times 10^{13} \text{ cm}$). For the MMSN in which only local growth is considered, the mass at which runaway accretion would have ceased in Jupiter’s accretion zone is $\sim 1 \text{ M}_\oplus$ (Lissauer, 1987), which is likely too small to explain Jupiter’s formation (see below). Rapid accretion can persist beyond the isolation mass if additional solids can diffuse into its feeding zone (Kary et al., 1993; Kary and Lissauer, 1995). There are
three plausible mechanisms for such diffusion: scattering between planetesimals, perturbations by neighboring planetary embryos, and migration of smaller planetesimals due to gas drag (Sec. 2.1). Other mechanisms that can lead to the migration of embryos from regions that are depleted in planetesimals into regions that are not depleted include gravitational torques resulting from the excitation of spiral density waves in the gaseous component of the disk (see Sec. 4.3.3), and dynamical friction (if significant energy is transferred from the planetary embryo to the protoplanetary disk; e.g., see Stewart and Wetherill, 1988).

In the inner part of protoplanetary disks, Kepler shear is too great to allow the accretion of solid planets larger than a few M_\oplus on any timescale unless the surface densities are considerably above that of the MMSN or a large amount of radial migration occurs. However, the fact that the relatively small terrestrial planets orbit deep within the Sun’s potential well suggests that they likely were unable to eject substantial amounts of material from the inner Solar System. Thus, the total amount of mass present in the terrestrial region during the runaway accretion epoch was probably not much more than the current mass of the terrestrial planets, implying that a high-velocity growth phase subsequent to runaway accretion was necessary in order to explain their present configuration (Lissauer, 1995).

This high-velocity final growth stage takes $O(10^8)$ years in the terrestrial planet zone (Safronov, 1969; Wetherill, 1980; Agnor et al., 1999; Chambers, 2001), but would require $O(10^9 - 10^{10})$ years in the giant planet zone (Safronov, 1969) if one assumes local growth in a MMSN disk. These timescales reflect a slowing down of the accretion rate during the late stages of planetary growth due to a drop in the planetesimals surface density (Wetherill, 1980, 1986). The growth timescales quoted above are far longer than any modern estimates of the lifetimes of gas within protoplanetary disks ($\lesssim 10^7$ years, Meyer et al., 2007), implying that Jupiter’s core must grow large enough during the rapid runaway/oligarchic growth. The epoch of runaway/rapid oligarchic growth lasts only millions of years or less near the location of Jupiter ($r = 5.2$ AU), but can produce $\sim 10 M_\oplus$ cores if the circumstellar disk is enhanced in solids by only a few times the MMSN (Lissauer, 1987). The limits on the initial surface density of the disk are less restrictive in the giant planet region, because excess solid material can be ejected to the Oort cloud, or out of the Solar System altogether.

The masses at which planets become isolated from the disk thereby terminating the runaway/rapid oligarchic growth epoch are likely to be comparably large at greater distances from the Sun. However, at these large distances, random velocities of planetesimals must remain quite small for accretion rates to be sufficiently rapid for planetary embryos to approach M_{iso} within the lifetimes of gaseous disks (Pollack et al., 1996). Indeed, if planetesimal velocities become too large, material is more likely to be ejected to interstellar space than accreted by the planetary embryos.

2.3. Gas Accretion

2.3.1. Tenuous Extended Envelope Phase. As the core grows, its gravitational potential well gets deeper, allowing its gravity to pull gas from the surrounding nebula towards it. At this stage, the core may begin to accumulate a gaseous envelope. A planet of order $1 M_\oplus$ (the value for a specific planet depends upon the mean molecular weight and opacity of the atmosphere; Stevenson, 1983) is able to capture an atmosphere because the escape speed from its physical surface is large compared to the thermal velocity (or sound speed) c_s of the surrounding gaseous protoplanetary disk. Initially, all gas with gravitational binding energy to the planet larger than the thermal energy is retained as part of the planet (Cameron et al., 1982; Bodenheimer and Pollack, 1986). The radial extent of this region is $\sim GM_p/c_s^2$, where G is the gravitational constant. If the protoplanet is small, this bound region can be significantly smaller than the protoplanet’s gravitational domain, whose size is typically a significant fraction of the protoplanet’s Hill sphere, R_H, which is given by:
Figure 1: Evolution of a proto-Jupiter within a protoplanetary disk with surface density of solids $\sigma_Z = 10$ g cm$^{-2}$ and grain opacity in the protoplanet’s envelope assumed to be at 2% of the interstellar value. Details of the calculation are presented in Lissauer et al. (2009). Left panel: The mass of solids in the planet (solid curve), gas in the planet (dotted curve), and the total mass of the planet (dot-dashed curve) are shown as functions of time. Note the slow, gradually increasing, buildup of gas, leading to a rapid growth spurt, and finally a slow tail off in accretion. (Courtesy O. Hubickyj) Right panel: The planet’s luminosity is shown as a function of time. The rapid contraction of the planet just before $t = 2.5$ Myr coincides with the highest luminosity and the epoch of most rapid gas accretion. From Lissauer et al., (2009).

$$R_H = \left(\frac{M_p}{3M_\odot} \right)^{1/3} r.$$ \hfill (4)

Here, M_p is the mass of the protoplanet, and r is the distance between the protoplanet and the Sun. The Hill radius denotes the distance from a planet’s center along the planet-Sun line at which the planet’s gravity equals the tidal force of the solar gravity relative to the planet’s center. As the protoplanet increases in mass, the region in which gas can be bound increases and may become a significant fraction of R_H.

An embryo begins to accrete gas slowly, so its gaseous envelope is initially optically thin and isothermal with the surrounding protoplanetary disk. As the envelope gains mass it becomes optically thick to outgoing thermal radiation, and its lower reaches can get much warmer and denser than the gas in the surrounding protoplanetary disk. As the protoplanet’s gravity continues to pull in gas from the surrounding disk towards it, thermal pressure from the existing envelope limits further accretion. This is because, for much of its gas accretion stage, the key factor limiting the protoplanet’s accumulation of gas is its ability to radiate away the gravitational energy provided by the continued accretion of planetesimals and the contraction of the envelope; this energy loss is necessary for the envelope to further contract and allow more gas to enter the protoplanet’s gravitational domain.

As the energy released by the accretion of planetesimals and gas is radiated away at the protoplanet’s photosphere, the photosphere cools and a subsequent pressure drop causes the envelope to contract. This is referred to as a Kelvin-Helmholtz contraction. Compression heats the envelope and regulates the rate of contraction which, in turn, controls how rapidly additional gas can enter the planet’s gravitational domain and be accreted.
This suggests that the rate and manner in which a giant planet accretes solids can substantially affect its ability to attract gas. Initially accreted solids form the planet’s core (Sec. 2.2), around which gas is able to accumulate. Calculated gas accretion rates are very strongly increasing functions of the total mass of the protoplanet, implying that rapid growth of the core is a key factor in enabling a protoplanet to accumulate substantial quantities of gas. Continued accretion of solids acts to reduce the protoplanet’s growth time by increasing the depth of its gravitational potential well, but also counters growth by providing additional thermal energy to the envelope from solids that sink to the core. Another hurdle to rapid growth that planetesimal accretion provides is the increased atmospheric opacity from dust grains that are released (ablated) in the upper parts of the envelope. If the opacity is sufficiently high, much of the growing planet’s envelope transports energy via convection. However, the distended very low density outer region of the envelope has thermal gradients that are too small for convection, but are large enough that they can act as an efficient thermal blanket if it is sufficiently dusty to be moderately opaque to outgoing radiation. This has the effect of slowing contraction and frustrating further accretion of gas, and lengthening the timescale for planet accretion.

Figure 1 shows the evolution of the mass and luminosity from a recent model of Jupiter’s formation (Lissauer et al., 2009). During the runaway planetesimal accretion epoch (when the core is predominantly being formed), the protoplanet’s mass increases rapidly. Although at this point the gaseous atmosphere is quite tenuous, the internal temperature and thermal pressure of the envelope increases, which prevents substantial amounts of nebular gas from falling onto the protoplanet. When the rate of planetesimal accretion decreases (roughly around $M_p \gtrsim 10 M_{\oplus}$), gas falls onto the protoplanet more rapidly as the additional component of thermal energy contributed by the accreting planetesimals decreases. At this stage the envelope mass is a sensitive function of the total mass, with the gaseous fraction increasing rapidly as the planet accretes (Pollack et al., 1996). When the envelope reaches a mass comparable to that of the core, the self-gravity of the gas becomes substantial, and the envelope contracts when more gas is added. Eventually, increases in the planet’s mass and the radiation of energy allow the envelope to shrink rapidly. Further accretion is then governed by the availability of gas rather than thermal considerations. At this point, the factor limiting the planet’s growth rate is the flow of gas from the surrounding protoplanetary disk (Lissauer et al., 2009).

The time required to reach this stage of rapid gas accretion is governed primarily by three factors: the mass of the solid core; the rate of energy input from continued accretion of solids; and the opacity of the envelope. These three factors appear to be key in determining whether giant planets are able to form within the lifetimes of protoplanetary disks ($\lesssim 10^7$ years). For example, in a disk with initial $\sigma_Z = 10$ g cm$^{-2}$ at 5.2 AU from a 1 M$_\odot$ star, a planet whose atmosphere has 2% interstellar opacity forms with a 16 M$_{\oplus}$ core in 2.3 Myr; in the same disk, a planet whose atmosphere has full interstellar opacity (~ 1 cm2 g$^{-1}$) forms with a 17 M$_{\oplus}$ core in 6.3 Myr; a planet whose atmosphere has 2% interstellar opacity but stops accreting solids at 10 M$_{\oplus}$ forms in 0.9 Myr, whereas if solids accretion is halted at 3 M$_{\oplus}$ accretion of a massive envelope requires 12 Myr (Hubickyj et al., 2005). These results suggest that if Jupiter’s core mass is significantly less than 10 M$_{\oplus}$, then it presents a problem for formation models mainly because disk dispersal times are observed to be shorter than the time it takes for a smaller core mass to accrete a massive enough envelope (unless the opacity of the envelope to outgoing radiation is significantly less than 2% of the interstellar medium).

Thus, the key to forming Jupiter prior to the dispersal of the nebula is the rapid formation of a massive core coupled with a combination of a decreased solids accretion rate and/or the outer regions of the giant planet envelope being transparent to outgoing radiation. However, since there
Figure 2: The surface mass density of a gaseous disk containing a Jupiter-mass planet on a circular orbit located 5.2 AU from a 1 M_\odot star. The ratio of the scale height of the disk to the distance from the star is 1/20, and the dimensionless viscosity at the location of the planet is $\alpha = 4 \times 10^{-3}$. The distance scale is in units of the planet's orbital distance, and surface density of 10^{-4} corresponds to 33 g cm$^{-2}$. The inset at the upper right shows a close-up of the disk region around the planet, plotted in cylindrical coordinates. The two series of white dots indicate actual trajectories (real particle paths, not streamlines) of material that is captured in the gravitational well of the planet and eventually accreted by the planet. See D'Angelo et al., (2005) for a description of the code used.

is little in the way of observational constraints, our understanding continues to be handicapped by uncertainties in quantities such as the opacity and solids accretion rate that are derived from planet formation models. The compositions of the atmospheres of the giant planets may provide some insight. As the envelope becomes more massive, late-accreting planetesimals (but, early-arriving in the context of satellite formation, see Sec. 4) sublimate before they can reach the core, thereby enhancing the heavy element content of the envelope considerably. In Sec. 2.4, we discuss more on the composition of Jupiter’s envelope.

2.3.2. Hydrodynamic Phase. As demonstrated in Fig. 1, a protoplanet accumulates gas at a gradually increasing rate until its gas component is comparable to its heavy element mass (i.e., the envelope and core are of comparable mass). At this point, the protoplanet has enough mass for its self-gravity to compress the envelope substantially. The rate of gas accretion then accelerates rapidly, and a gas runaway occurs (Pollack et al., 1996; Hubickyj et al., 2005). This accretion continues as long as there is gas in the vicinity of the protoplanet’s orbit. The ability of the protoplanet to accrete gas does not depend strongly on the outer boundary conditions (temperature and pressure) of the surrounding nebula, if there is adequate gas around to be accreted (Mizuno, 1980; Stevenson, 1982; Pollack et al., 1996). Hydrodynamic limits allow quite rapid gas flow to the planet in an unperturbed disk. But in realistic scenarios, the protoplanet not only alters the disk by accreting material from it, but also by exerting gravitational torques on it (see Sec. 4). Both of these processes can lead to a formation of a gap in the circumsolar disk (e.g., Lin and Papaloizou, 1979) and isolation of the planet from the surrounding gas, thus providing a means of limiting the final mass of the giant planet.

Observationally, such gravitationally induced gaps have been observed around small moons within Saturn’s rings (Showalter, 1991; Porco et al., 2005). Numerically, gas gap formation has been studied extensively. For example, D’Angelo et al., (2003b) used a 3D adaptive mesh refinement code to follow the flow of gas onto accreting giant planets of various masses embedded within a gaseous protoplanetary disk. Bate et al., (2003) have performed 3D simulations of this problem using the ZEUS hydrodynamics code. Using parameters appropriate for a moderately viscous MMSN...
protoplanetary disk at 5 AU ($\alpha \sim 4 \times 10^{-3}$, see Sec. 3.3), both groups found that $< 10 \, M_\oplus$ planets don’t perturb the protoplanetary disk enough to significantly affect the amount of gas that flows towards them. Gravitational torques on the disk by larger planets under these disk conditions drive away gas. In a moderately viscous disk, hydrodynamic limits on gas accretion reach to a few $\times 10^{-2} \, M_\oplus$ per year for planets in the $\sim 50 - 100 \, M_\oplus$ range, and then decline as the planet continues to grow. An example of gas flow around/to a 1 M_J planet is shown in Figure 2. In general, caution must be exercised in the interpretation of these types of calculations when attempting to connect them with the formation of the giant planet itself. Thus, for example, these calculations do not include the thermal pressure on the nebula from the hot planet, which is found to be the major accretion-limiting factor for planets up to a few tens of M_\oplus by the simulations discussed in Section 2.3.1 (Hubickyj et al., 2005; Lissauer and Stevenson, 2007; Lissauer et al., 2009). It should be noted that ability for a protoplanet to open a gap is dependent on the viscosity of the disk. In nearly inviscid disks, for example, a $\sim 10 \, M_\oplus$ protoplanet may be capable of opening a gap (Rafikov, 2002a,b; Sec. 4.3.3).

If the planet successfully cuts off its supply of gas by the opening of a gap in the circumsolar disk, the planet effectively enters the isolation stage. Jupiter then contracts and cools to its present state at constant mass.

2.4. The Composition of Jupiter’s Envelope

2.4.1. Enhancement in Heavy Elements. The elemental abundances of gases in Jupiter’s atmosphere that are quite volatile, but unlike H and He still condensible within the giant planet region of the solar nebula, are about $\sim 3 - 4$ times solar (Atreya et al., 1999; Mahaffy et al., 2000; Young, 2003). If the relative abundances of all condensible elements in Jupiter’s envelope are the same as in the Sun, then such material must account for $\sim 18 \, M_\oplus$ (Owen and Encrenaz, 2003). This suggests that solar ratio solids must have been abundant in the early Solar System. However, present day evidence for this material remains elusive, because no solid objects (e.g., comets, asteroids) have been found that have solar ratios of Ar, Kr, Xe, S and N relative to C, as does Jupiter (although solar S/C was found for Comet Halley by Giotto, the detection of noble gas and N_2 abundances in cometary comae is quite challenging).

Explanation for this enhancement has been attributed to one of two different mechanisms. The first idea relies on the delivery of volatiles from the outer regions of the solar nebula that were trapped in amorphous ice and then incorporated into planetesimals. Based on the laboratory work of Bar-Nun et al. (1988; also see 2007), this approach initially led to the expectation that Jupiter may not be enhanced in volatile elements like Ar which condenses at very low temperatures (< 30 K) because planetesimals that formed near the snow line likely dominated the delivery of heavy elements to Jupiter’s envelope. A second view for Jupiter’s enhancement proposed by Gautier et al. (2001a,b; also cf. Hersant et al., 2004), is that volatiles were trapped in crystalline ices in the form of clathrate-hydrates (Lunine and Stevenson, 1985) at different temperatures in Jupiter’s feeding zone which were then incorporated into the planetesimals that went into Jupiter. But even though argon can be trapped in clathrates at temperatures above its condensation temperature, clathration of Ar still requires very low solar nebula temperatures $T \sim 36$ K, which is inconsistent with temperatures at Jupiter’s location even using cool passive disk models (Chiang and Goldreich, 1997; Sasselov and Lecar, 2000; Chiang et al., 2001).

Given that Ar does not condense at temperatures higher than $\gtrsim 30$ K, one might expect that the ratio of Ar to H in Jupiter should be the same in Jupiter as the Sun, if indeed Jupiter’s formation were characterized by local growth (see discussion at beginning of Sec. 2). However, there likely was considerable migration of solids due to gas drag in the outer solar nebula (see Figure 3), so it cannot
Figure 3: Sufficiently far from the Sun (∼30 AU), amorphous ice forming at low temperatures (≲30 K) can trap volatiles (Owen et al., 1999). In warmer regions of the nebula closer to the Sun, ice is crystalline and volatiles may be trapped in clathrate hydrates (Lunine and Stevenson, 1985; Gautier et al., 2001a,b). Planetesimals that form in cold regions and cross into warmer regions suffer a transition from amorphous to crystalline ice at a rate that depends on temperature (Schmitt et al., 1989; Mekler and Podolak, 1994). The condition that this transition takes longer than the lifetime of the nebula defines a location outside of which amorphous ice can mix in provided cold planetesimals are delivered by gas drag migration in a similar timescale (which applies to planetesimals < 1 km for a MMSN). An ice grain may retain its amorphous state for the age of the solar nebula (∼10^7 years) provided that the temperature is < 85 K. Thus, it may be possible to deliver volatiles to the atmospheres of the forming giant planets either in amorphous ice or crystalline ice, depending on trapping efficiency in the two ice-phases, the initial distribution of mass in the primordial nebula, and the specifics of the growth, migration and thermal evolution of planetesimals. This point of view provides a natural fit for the existence of the outer edge of the classical Kuiper Belt – that is, primordial planetesimals located outside ∼30 AU may have migrated to the inner Solar System by gas drag, delivering volatiles and enhancing the solid fraction in the planetary region (this outer edge location refers to the time prior to the outward migration of Neptune, which could have pushed the Kuiper Belt out; Levison and Morbidelli, 2003). Note that the temperature chosen at the location of Jupiter and Saturn is consistent with passive disk models (e.g., Chiang et al., 2001).

be assumed that material (of solar proportions) remained at the location in the protoplanetary disk where it condensed. This argument is bolstered by high-resolution submillimeter continuum observations that indicate the average dust disk sizes around T Tauri stars are ∼200 AU (Andrews and Williams, 2007), with similar results being obtained via millimeter interferometry (Kitamura et
This disk of solids eventually shrinks (even if the gas disk spreads outwards) presumably due to coagulation with objects eventually growing large enough to decouple from the gas and migrate inwards (Sec. 2.1). Some planetesimal formation takes place at sufficient distances that the circumsolar disk is very cold (see Fig. 3), perhaps cold enough to allow for the trapping of volatiles within the interiors of planetesimals in either amorphous or crystalline (in the form of clathrates) ice, depending on the trapping efficiency and kinetics. As these planetesimals drift in, they likely encounter warmer regions. Further growth to comet sizes \(\sim 1 \) km occurs at some point (Weidenschilling, 1997; Kornet et al., 2004), at which time they attain drag times comparable to the lifetime of the circumsolar gas disk (\(\lesssim 10^7 \) years).

The success of this solids migration mechanism depends on whether inwardly migrating planetesimals that possibly included amorphous ice within their interiors at the outset (Mekler and Podolak, 1994), were altered by the higher temperatures of the inner nebula and became mostly crystalline, losing the volatiles that would have been trapped in them (Bar-Nun et al., 1985, 1987). Amorphous ice undergoes a transformation to crystalline ice at a rate that depends strongly on temperature (Schmitt et al., 1989; Kouchi et al., 1994; Mekler and Podolak, 1994). An ice grain may retain its amorphous state for the lifetime of the nebula (\(\lesssim 10^7 \) years) provided the temperature is \(< 85 \) K. That is, low temperatures favor the preservation of amorphous ice, while long time spans and even temporarily elevated temperatures drive the ice toward crystallization.

Thus, while the temperature constraint for incorporation of Ar in grains is quite stringent, the temperature constraint for planetesimals to preserve volatiles they acquired in cold portions of the disk may be much less so. Indeed, a temperature of \(< 85 \) K is quite consistent with cool passive disk models at the location of Jupiter (Chiang and Goldreich, 1997; Chiang et al., 2001; see Fig. 3). However, if such planetesimals incorporated significant amounts of short-lived radionuclides such as \(^{26}\)Al, radioactive decay would provide heating that would further complicate the ability for planetesimals to preserve their amorphous state (Prialnik and Podolak, 1995). Nevertheless, in the outer disk one would naturally expect longer accretion times, which would result in weaker radioactive heating and lower temperatures. It remains to be shown whether one can expect amorphous ice to be preserved within migrating planetesimals over the lifetime of the solar nebula, making it possible to deliver argon and other volatiles to Jupiter.

2.4.2. The Snow Line and Planetesimal Delivery

A likely consequence of this picture is that a shrinking (dust) disk would lead to a higher solids fraction in the planetary region than given by a MMSN. As we noted in Sec. 2.2, this is consistent with the requirement that the circumsolar disk be enhanced in solids by at least a factor of few in order for \(\sim 10 \) M\(_{\oplus}\) cores to be formed during the runaway/oligarchic growth phase. Subsequently, some of the “excess” material, variously estimated between 50 – 100 M\(_{\oplus}\) (Stern, 2003; Goldreich et al., 2004), may wind up in the Oort cloud. Since Earth-sized objects may migrate (not via gas drag, but by gravitational interaction with the gaseous disk, see Sec. 4.3.3) in a time shorter than or comparable to the nebula dissipation time, some of this solid material may also be lost to the Sun.

On the other hand, meter-sized objects have relatively short gas drag migration times (\(\sim 10^4 - 10^5 \) years at Jupiter), so it is possible that some fraction of the solid content of the disk drifted in until it encountered the snow line. Inwardly drifting planetesimals might then sublimate at this (water-ice) evaporation front (e.g., Stevenson and Lunine, 1988; Ciesla and Cuzzi, 2006). Within the context of the model proposed by these workers, the snow line might receive most of the volatile enhancement, even for heavy elements more volatile than water. If the solar nebula were turbulent, then diffusion due to turbulence might spread the effects of this evaporation front over a larger region. If the snow line is somewhere between 3 – 5 AU (Morfill and Völk, 1984; Stevenson and Lunine, 1988; Cuzzi and Zahnle, 2004), then one might expect that the volatile heavy element...
enrichment in Jupiter’s envelope is due to the high-volatile content of the nebula at its location. We should emphasize that this scenario is complicated by the likely temporal variation in the location of the snow line. The snow line may have been much closer to the Sun as would be predicted by more recent thermal structure models (e.g., Sasselov and Lecar, 2000; Chiang et al., 2001).

Regardless of the snow line’s temporal variation, the condensation front scenario would imply that Jupiter’s enrichment should be more pronounced than Saturn’s. Yet this conclusion appears to be in conflict with observations of Saturn’s elemental ratio with respect to solar of C/H (∼ 2 − 6, Courtin et al., 1984; Buriez and de Bergh, 1981) and N/H (∼ 2 − 4, Marten et al., 1980; de Pater and Massie, 1985). The enhancement at the water-ice evaporation front would be dependent on how much of this material is delivered and how this material is incorporated into the Jupiter region. If most of the highly volatile content of planetesimals (e.g., argon) vaporizes prior to either being mixed into the planet or somehow “embedded” in the circumplanetary subdisk, the enhancement in Jupiter’s atmosphere may still be explained. The delivery of volatile-ladden, pristine planetesimals may be a more efficient process, especially if the temperature at Jupiter’s location is more consistent with a passive disk (Fig. 3). Thus, it is presently unclear whether it is possible to deliver and enhance heavy elements more volatile than water simultaneously at Jupiter (and Saturn) by enriching the nebula gas instead of direct planetesimal delivery. The latter would likely predict a higher heavy element enhancement for planets that accreted less gas from the nebula.

3. FORMATION OF THE CIRCUMJOVIAN DISK

As Jupiter’s core mass grows, it obtains a substantial atmosphere through the collection of the surrounding solar nebula gas. Early on (still in the nebular stage), this gas falls onto a distended envelope that extends out to a significant fraction of the Hill sphere. Once the protoplanet reaches a mass of ∼ 50 − 100 M⊕, the envelope contracts rapidly (transition stage). Eventually, Jupiter becomes massive enough to truncate the gas disk by the opening of a deep gas gap in the solar nebula and/or because all of the gas in its feeding zone is depleted. Once all the gas within reach of the planet is depleted, accretion ends (isolation stage). We now address how the circumplanetary gas disk fits into this multi-stage process.

3.1. Introduction

A very basic characteristic of the circumjovian disk is its radial extent: how far does it extend from the planet? The size of the subnebula upon inflow depends on the specific angular momentum of gas flowing into the giant planet’s gravitational domain (Lissauer, 1995; Mosqueira and Estrada, 2003a). Before and during much of the runaway gas accretion phase of Jupiter’s formation (which spans a period prior to and after envelope contraction), the gas that enters the protoplanet’s Roche lobe (equivalently, its Hill sphere, see Eq. 4) has low specific angular momentum. This is because the mass of the protoplanet for much of this period is not sufficient to open a significant gas gap in the solar nebula for typical circumsolar disk model parameter choices (see Sec. 3.4, and below). As a result, most of the gas being accreted during this period originates within the vicinity of the protoplanet (i.e., at heliocentric distances ≲ RH from the planet). Prior to envelope contraction, gas accretes onto the giant planet’s distended atmosphere.

The contraction of the distended envelope happens early during the runaway gas accretion phase. Current models have Jupiter contracting prior to reaching ∼ 1/3 of its final mass. Moreover, the timescale for envelope collapse (down to a few planetary radii) is relatively quick compared to the runaway gas accretion epoch (see Lissauer et al., 2009). This indicates that the subnebula
(circumplanetary disk) begins to form relatively early in the planet formation process when the planet is not sufficiently large to truncate the gas disk. As a result, the gas that continues to flow into the Roche lobe has mostly low specific angular momentum. Since the proto-Jupiter must still accrete $\gtrsim 200 M_\oplus$ after envelope collapse, this suggests that the gas mass deposited over time in the relatively compact subnebula could be substantial. Furthermore, this still preliminary picture may be consistent with the view that the planet and disk may receive similar amounts of angular momentum (e.g., Stevenson et al., 1986; Sec. 4).

As the protoplanet grows more massive, it clears the surrounding nebula gas through the actions of gas accretion and tidal interaction, leading to the formation of a gas gap in the solar nebula (Sec. 2.3.2). Sufficiently massive objects may actually truncate the disk, which we take to mean that almost all of the available gas in the vicinity of the giant planet has been accreted or shoved aside, so that the density in the (deep) gap is $\lesssim 10^{-2}$ of the unperturbed density at that location. In a moderately viscous disk, a Jupiter mass planet ($1 M_J$), truncates the disk in a few hundred orbital periods (or $\sim 10^3$ years at 5.2 AU). Larger masses are required to open a deep gap in a viscous disk in order to overcome the tendency of turbulent diffusion to refill the gap.

This picture applies to an accretion scenario for Jupiter that assumes that no other planets influence the evolution of the nebula gas. In a scenario in which the giant planets of the Solar System start out much closer to each other and subsequently migrate outwards (Tsiganis et al., 2005), the two planets jointly open a gap (if they grow almost simultaneously). In such a scenario, Saturn’s local influence would dominate over that of turbulence in a moderately viscous disk (Morbidelli and Crida, 2007).

The process of gap-opening in the circumsolar gas disk has direct bearing on the satellite formation environment. As the gap becomes deeper, the continued gas inflow through this gap can significantly alter the properties of the subnebula. In particular, as gas in the protoplanet’s vicinity is depleted, the inflow begins to be dominated by gas with specific angular momentum which is much higher than what previously accreted onto the distended envelope and/or compact disk. This is because the gas must now come from farther away (heliocentric distances $\gtrsim R_H$). Since satellite formation is expected to begin at this time (see Sec. 4), the character of the gas inflow during the waning stage of Jupiter’s accretion is a key issue in determining the environment in which the Galilean satellites form.

It is worth noting that Europa and the other Galilean satellites occupy a compact region (roughly $\sim 4\%$ of the Hill radius). The mass (and angular momentum) of outermost Callisto is comparable to that of Ganymede. This similarity in mass of these two Galilean satellites is puzzling since one might expect the outermost satellite to have significantly less mass. This is because it is a priori difficult to envision how the surface density of the satellite disk could have been large enough to make a massive satellite such as Callisto at its location, but insufficient to form other, smaller satellites outside its orbit (Mosqueira and Estrada, 2003a). Callisto’s large mass most likely indicates that the circumjovian disk extended significantly beyond Callisto’s orbit; thus, the lack of regular satellites outside Callisto requires explanation.

Until recently, numerical models that simulate gas accretion onto a “giant planet” embedded in a circumstellar disk could not resolve scales smaller than $\sim 0.1 R_H$ (e.g., Lubow et al., 1999; Bate et al., 2003), a region several times larger than is populated by the regular satellites. It is only with the advent of higher resolution 2D and 3D simulations (described in Sec. 3.3) that it became possible to resolve structure on the scale of the radial extent of the Galilean satellites. These recent simulations indicate that the circumplanetary disk formed by the gas inflow through the gap – irrespective of any subsequent viscous evolution and spreading – likely extended as much as ~ 5 times the size of the Galilean system (D’Angelo et al., 2003b). Thus, the specific angular momentum of gas inflow
through a gap is significantly larger than that of the satellites themselves.

3.2. Analytical Estimates of Disk Sizes

We can obtain an estimate of the characteristic disk size formed by the accretion of low specific angular momentum gas before gap-opening, using angular momentum conservation. Assuming that Jupiter travels on a circular orbit, that the solar nebula gas moves in Keplerian orbits, and that prior to gap-opening Jupiter accretes gas parcels with semimajor axes originating from up to \(R_H \) of its location, then the specific angular momentum \(\ell \) of the accreted gas is approximately given by (Lissauer, 1995):

\[
\ell \approx -\Omega \frac{\int_0^{R_H} \frac{3}{2} x^3 dx}{\int_0^{R_H} x dx} + \Omega R_H^2 \approx \frac{1}{4} \Omega R_H^2.
\] (5)

The expression for the specific angular momentum estimate given above has two contributions. The first term is the specific angular momentum flux flowing into the planet due to Keplerian shear computed in the frame rotating at the planet’s angular velocity. The second contribution is a correction to translate back to an inertial frame (see Lissauer, 1995 and references therein). Equation (5) neglects the gravitational effect of the planet, and assumes that the angular momentum of the inflowing gas is delivered to the Roche lobe of the giant planet. Using conservation of angular momentum, balancing centrifugal and gravitational forces \(\frac{\ell^2}{r_c^3} \approx \frac{GM_J}{r_c^2} \) we obtain the centrifugal radius (Cassen and Pettibone, 1976; Stevenson et al., 1986; Lissauer, 1995; Mosqueira and Estrada, 2003a):

\[
r_c \approx \frac{R_H}{48}.
\] (6)

For a fully grown Jupiter, the centrifugal radius is located at \(r_c \approx 15 R_J \) (where \(R_J = 71492 \) km is a Jupiter radius) just outside the position of Ganymede (for Saturn, \(r_c \) lies just outside of Titan, see Fig. 1 of Mosqueira and Estrada, 2003a). While this calculation would seem to employ unrealistic assumptions, recent 3D simulations indicate that it provides a meaningful estimate (Machida et al., 2008. The resulting disk size is consistent with the radial extent of the Galilean satellites.

After gap-opening, accretion may continue through the planetary Lagrange points, as seen in some simulations (e.g., Artymowicz and Lubow, 1996; Lubow et al., 1999). Specifically, accretion occurs through the \(L_1 \) and \(L_2 \) points, which are located at roughly a distance \(R_H \) from the planet, and along the line connecting protoplanet and Sun (see Fig. 4). At these Lagrange points, the gravitational fields of both the protoplanet and the Sun combined with the centrifugal force are in balance. As seen in the rotating frame, a massless body placed at this location with zero relative velocity would remain stationary. We can obtain an estimate of the specific angular momentum of the gas as it passes through the Lagrange points by assuming that the inflow takes place at a low velocity in the rotating frame and it is directed nearly towards the planet. This may be done by keeping only the change of frame contribution of Eq. (5) or \(\ell \sim \Omega R_H^2 \). Again, using conservation of angular momentum, the estimated characteristic disk size formed by the inflow is significantly larger than before, roughly \(\sim \frac{R_H}{3} \sim 260 R_J \) (e.g., Quillen and Trilling, 1998; Mosqueira and Estrada, 2003a).

These estimates indicate that gas flowing through a gap in the circumsolar disk brings with it significantly higher specific angular momentum, which produces a larger characteristic circumplanetary disk size, than does incoming gas when no gap is present. This information combined with the observed mass distribution of the regular satellites of Jupiter (and Saturn) can be used to argue in favor of a two-component circumplanetary disk: (1) a compact, relatively massive disk
that forms over a period of time post envelope collapse and prior to disk truncation, and (2) a more extended, less massive outer disk that forms from gas flowing through a gap and at a lower inflow rate (e.g., Bryden et al., 1999; D'Angelo et al., 2003b). An idealization of this two-component subnebula is shown in Fig. 8 (see left panel and caption). However, the details of the formation of the giant planet from the envelope collapse phase, to gap-opening and isolation remains to be shown using hydrodynamical simulations. Numerical simulations of giant planet formation tend either to treat the growth of the protoplanet in isolation (e.g., Pollack et al., 1996; Hubickyj et al., 2005; see Sec. 2), or to treat giant planets (∼1 M_J) embedded in circumstellar disks in the presence of a well-defined, deep gap (e.g., Lubow et al., 1999; Kley 1999; Bate et al., 2003; D'Angelo et al., 2003b). Mainly because of the computational demands, the latter simulations do not model changing planetary or nebula conditions. Not surprisingly then, the transition between a distended planetary envelope and a subnebula disk has received scant attention.

A consequence of continued gas inflow through the gap is that the subnebula will continue to evolve due to the turbulent viscosity generated by gas accretion onto the circumplanetary disk. However, even weak turbulence can pose a problem for satellites formation (Sec. 2.1). The turbulent circumplanetary disk environment generated by the inflow likely means that satellite formation does not begin until late in the planetary formation sequence when the gas inflow (through the gap) wanes, at which point turbulence in the subnebula may decay. The formation of the satellites at the stage where the planet approaches its final mass is further supported by the fact that even weak, ongoing inflow through the gap can generate a substantial amount of heating due to turbulent viscosity, which would generally result in a circumplanetary disk that is too hot for ice to condense and satellites to form and survive (e.g., Coradini et al., 1989; Makalkin et al., 1999; Klahr and Kley, 2006). As a result, a very low gas inflow rate – orders of magnitude lower than the accretion rates through gas gaps in numerical simulations (∼10^{-2} M_{\oplus} yr^{-1}, e.g., Lubow et al., 1999) – is probably a requirement of any satellite formation model. Even so, some applicable conclusions can be drawn from existing simulations.

3.3. Numerical Results in 2D/3D in the Presence of a Gap

Two-dimensional hydrodynamics calculations of a Jupiter-mass planet embedded in a circumstellar disk show prograde circulation of material within the planet’s Roche lobe that is reminiscent of a circumplanetary disk (Lubow et al., 1999, Kley, 1999). These simulations show that gas can flow through the gap formed by the giant planet, depending on the value for the nebula turbulence parameter (α ≳ 10^{-4}, Bryden et al., 1999). A prominent feature exhibited in these Roche-lobe flows or streams is a two-arm spiral wave structure (see left panels of Fig. 4, which is a 3D simulation). As gas flow enters the Roche lobe near the planetary Lagrange points, these streams encircle the planet and impact one another on the opposite side (from which they entered). The resulting collision shocks the material, and deflects the flow towards the planet (e.g., D’Angelo et al., 2002). In 2D, the spiral wave structure is weaker (not as tightly wound) for decreasing protoplanet mass, and disappears altogether for ∼1 M_{\oplus} protoplanetary masses. In 3D simulations, these spiral waves are also less marked than in 2D as a consequence of the flow no longer being restricted to a plane (see, e.g., D’Angelo et al., 2003a; Klahr and Kley, 2006). Despite the differences of the accretion flow, gas accretion rates in 2D and 3D are similar.

Detailed simulations of such systems pose a significant challenge from a numerical point of view since they demand that both the circumstellar disk and the hydrodynamics deep inside the planet’s Roche lobe must be resolved. This requirement means that length scales must be resolved over more than two orders of magnitude, from the planet’s orbital radius, r_p, down to a few per cent of the Hill radius, R_H. D’Angelo et al. (2002, 2003b) carry out a quantitative analysis of the
properties of circumplanetary disks around Jovian and sub-Jovian mass planets. By treating the circumstellar disk as a locally isothermal and viscous fluid, and using a grid refinement technique known as “nested grids” that allow them to resolve length scales around the planet on the order of 0.01 R_H (∼ 7 R_J for 1 M_J), these authors are able to show that the dynamical properties of the material orbiting within a few tenths of R_H from the planet are indeed consistent with a disk in Keplerian rotation.

Figure 4 shows the mass density distributions from a three-dimensional, local isothermal model (see D’Angelo et al., 2003b for details). The temperature at 5.2 AU is assumed to be T ∼ 110 K (if the mean molecular weight of the gas is about 2.2) and the kinematic viscosity, ν, in this case is assumed to be constant in space and time (see discussion at the end of Sec. 3.2). The aspect ratio of the circumstellar disk, which is given by the ratio of the disk’s semi-thickness (generally denoted as H) at the location of the planet to the planet’s semi-major axis, is H/r_p ∼ 0.05. For the disk parameters chosen, ν is comparable to a turbulent viscosity with an α-parameter of 4 × 10^{-3} at r_p. The top panel on the left illustrates the circumstellar disk and the density gap produced by the planet that exerts gravitational torques on the disk material. The other panels show the mass density, in logarithmic scale, over lengths ∼ R_H (left) and ∼ 0.1 R_H (right). The bottom panel on the right displays the density in the disk’s midplane, azimuthally averaged around the planet, as a function of the distance from the planet, s. The models shown in Fig. 4 can be rescaled by the unperturbed value of the mass density ρ (i.e., that of the circumstellar disk when the planet is not present) at r_p, which is a consequence of the locally isothermal approach. Therefore, the calculated density structure in the disk is independent of the unperturbed value of ρ. For the value of ρ chosen in Fig. 4, the disk mass within 0.2 R_H is ∼ 10^{-4} M_J.

D’Angelo et al. (2003a) present thermo-dynamical models of circumjovian disks in two dimensions. In these calculations, the energy budget of the disk accounts for advection and compressional work, viscous dissipation and local radiative dissipation. Characteristic temperatures and densities in these models depend mainly upon viscosity, opacity tables, and initial mass of the circumstellar disk. In this case, the results are not scalable by the unperturbed mass density, because the opacity depends on the value of ρ chosen.

Figure 5 displays surface density (left) and temperature profiles (right) obtained from calculations with different prescriptions and magnitude of the kinematic viscosity. These models rely on the opacity tables of Bell and Lin (1994) and assume that the initial unperturbed surface density, Σ, at 5.2 AU is roughly 100 g cm^{-2}. The circumstellar disk contains about 4.8 Jupiter masses within 13 AU of the star. The model with highest density and temperature (black curves) has a constant (in space and time) kinematic viscosity ν = 10^{15} cm^2 s^{-1}. The other models assume an α-viscosity ν = αc_s H, where the sound speed c_s and the pressure scale height H are a function of space and time while α is a constant. In Fig. 5, for increasing density and temperature, models have α = 10^{-4} (short-dashed curves), 10^{-3} (long-dashed curves), and 10^{-2} (dot-dashed curves), respectively. The value of α applies to both the circumsolar and circumplanetary disks. In the cases shown in the Figure, the amount of mass within about 0.2 R_H of the planet is in the range between ∼ 10^{-5} – 10^{-4} M_J.

The specific angular momentum from three dimensional as well as two dimensional models for a 1 M_J mass planet is plotted in Fig. 6. Within ∼ 0.15 R_H of the planet, the rotation of the disk follows the rotation curve of a Keplerian disk (dashed curve). The curves correspond to the models in Fig. 5, while the multiple dot-dashed curve represents the 3D case. It is interesting to note in the latter case that, even though the subnebula temperature is assumed to be constant, the specific angular momentum distribution is consistent with that of the 2D models which are determined by means of calculations that allow for heating and cooling processes. Thus, it appears that for
Figure 4: Formation of a circumplanetary disk around a Jupiter-mass planet in 3D. The top panel on the left shows the mass density distribution, ρ, in the circumstellar disk’s midplane. The bottom panel on the left as well as the top and center panels on the right show density distributions, in logarithmic scale, within the planet’s Roche lobe (the tear-drop shaped region marked by the dashed line). Iso-density contours are also indicated in two panels on the right. The logarithm (base 10) of the azimuthally averaged density in the disk’s midplane is shown in the bottom panel on the right, where s represents the distance from the planet. The units on the axes are either the planet’s orbital radius, r_p (X and Y coordinates), or the Hill radius, R_H (x_H, y_H, and z_H coordinates). The units of ρ are such that 10^{-3} corresponds to 10^{-12} g cm$^{-3}$.
Figure 5: Surface density (left) and temperature (right) of two-dimensional circumjovian disk models with viscous heating and radiative cooling (see text for further details). The quantities represent azimuthal averages around the planet. The models differ in the adopted viscosity prescription. The calculation which produces the highest density and temperature (solid curve) assumes a constant $\nu = 10^{15} \text{cm}^2 \text{s}^{-1}$. The other calculations assume an α-type viscosity, $\nu = \alpha c_s H$ (the same value of α applies to nebula and subnebula), so ν is therefore space- and time-dependent. For increasing density and temperature, models have $\alpha = 10^{-4}$ (short dash), 10^{-3} (long dash), and 10^{-2} (dot-dash), respectively.

Figure 6: Specific angular momentum of circum-Jovian disk models, in two and three dimensions, azimuthally averaged around the planet. The quantity w is the azimuthal velocity around the planet. Results from models in Figure 4 and Figure 5 are displayed. The multiple dot-dash curve represents the 3D isothermal case. The less bold dashed line represents the Keplerian angular momentum. The horizontal line is the specific angular momentum of the Galilean satellites.
large planetary masses in which a deep gap is present in the circumstellar gas disk, 2D and 3D simulations give comparable results for the specific angular momentum. This is because the gas flowing across such a deep gap into the Roche lobe is coming from much farther away than R_H (see upper left panel of Fig. 4). Although the flow pattern in 2D and 3D differ, by the time the gas reaches the planet the specific angular momentum delivered with the inflow in both cases is qualitatively similar.

Finally, for comparison, the specific angular momentum of the Galilean satellites is also indicated (solid horizontal line). These simulations indicate that gaps correspond to higher specific angular momentum, and a larger characteristic disk size formed by the inflow, than that of the regular satellites themselves.

3.4. Connecting the Planet, its Disk, and the Satellites

As was pointed out in Sec. 3.2, planetary formation models tend to focus on either the growth of the planet in isolation (Sec. 2), or a protoplanet of fixed mass embedded in a circumstellar disk in the presence of a well formed gap (Sec. 3.3). As a result, our understanding of the formation of the circumjovian gas disk remains incomplete, as no simulations have yet been done that model disk formation starting after the giant planet’s envelope contraction to the time at which inflow from the circumsolar disk ceases.

During the period over which circumjovian disk formation occurs, the characteristic disk size may be roughly estimated by a balance between gravitational and centrifugal forces (Sec. 3.2). Because the protoplanet likely accretes most of its gas mass after envelope collapse, a significant fraction of this gas may end up in the circumjovian gas disk leading to an initially massive subnebula. A legitimate concern that arises from this scenario is why is it that Jupiter is not rotating near break-up velocity. The origin of Jupiter’s current spin angular momentum remains poorly understood. A massive circumplanetary disk may be a requirement for despinning the planet (see e.g., Korycansky et al., 1991; Takata and Stevenson, 1996), although Jupiter’s spin may require consideration of the role of magnetic fields. The question of Jupiter’s spin thus represents a key piece of the Jovian system puzzle that is in need of further investigation.

A compact massive disk will have important implications for satellite formation models. The characterization of this disk component will require the marriage of isolated growth models and embedded planet simulations, a milestone that is just beginning to be explored. Indeed, recent simulations of gas accretion onto a low-mass protoplanet (i.e., a deep gap is not present) embedded in a circumstellar disk indicate that gas may not be bound to the planet outside of $\sim 0.25 \, R_H$ (Lissauer et al., 2009). Measurements of the specific angular momentum contained within the bound region for different pre-gap-opening protoplanet masses are consistent with Eq. 5 yielding $\ell \lesssim \Omega R_H^2 / 4$ (it is important to note that a parcel of gas that crosses within 0.25 R_H of the planet may originate from a radial distance as far as R_H).

Recently, Machida et al. (2008) use 3D hydrodynamical simulations to model the angular momentum accretion into the giant planet Hill sphere when a partially depleted gap is present. These authors find for a range of planetary masses that a significant fraction of the total angular momentum may contribute to the formation of a compact circumplanetary disk. These results are inapplicable for masses comparable to 1 M_J. This is because the local simulation used by these workers is inappropriate to treat gap formation because of the radial boundary (Miyoshi et al., 1999), so that the depth and width of the gap depends on the size of the simulation box used. However, as we pointed out earlier, an important conclusion that may be drawn from the results of Machida et al. is that a circumplanetary disk formed when a partial gap is present is compact due to the lower specific angular momentum of the inflow.
For large planetary masses in the presence of a deep gap, the circumplanetary disk size is qualitatively insensitive to the inflow rate, or whether the flow is treated in 2D or 3D. However, 3D simulations are required early on in the accretion of the protoplanet when a deep gap is not present. We can understand this by noting that material in the nebula midplane whose semimajor axis is close to the planet ($\lesssim R_H$) actually does not accrete onto the planet, but instead undergoes horseshoe orbits (e.g., Lubow et al., 1999; Tanigawa and Watanabe, 2002). Three-dimensional flows are then necessary to allow for low angular momentum gas from radial distances $\lesssim R_H$ and away from the midplane to be accreted directly onto the planet or into a compact disk (Bate et al., 2003; D’Angelo et al., 2003a). Moreover, D’Angelo et al. (2003b) point out that because of the flow circulation away from the disk midplane, less angular momentum is carried inside the Roche lobe by the midplane flow, so that in general 3D simulations are required in order to properly account for the angular momentum.

What does this all mean for the formation of the Galilean satellites, which lie in a quite compact region close to the planet? When a well-formed gap is present, the characteristic circumjovian disk size formed by the inflow is $> 0.1 R_H$, or $> 70 R_J$ (by comparison Ganymede is located at $\sim 15 R_J$). From Fig. 6, it can be seen that the specific angular momentum of the inflow is about a factor of $3 - 4$ larger than that of the Galilean satellites ($\sim 1.1 \times 10^{17}$ cm2 s$^{-1}$), which means that the gas will achieve centrifugal balance at a radial location of $\sim 200 R_J$. While this disk is compact compared to R_H, it is extended in terms of the locations of the Galilean satellites, and possibly linked to the location of the irregulars (the innermost ones of which lie near $\sim 150 R_J$). Thus, these results indicate that the inflow through a gap in the circumsolar disk results in an extended circumplanetary disk of characteristic size $\sim 70 - 200 R_J$, implying a mismatch between the size of the circumplanetary disk formed by gas inflow through the giant planet’s gap and the compact region where the regular satellites are found.

This mismatch has important consequences for satellite formation. Taken at face value, it may mean one of two things: (i) the solid material coupled to the gas coming through the gap did not provide the bulk of the material that formed the regular satellites – planetesimals that were not coupled to the gas provided this source instead (see Sec. 4.2); or (ii) the regular satellites migrated distances considerably larger than their current distances from Jupiter. The first option would effectively preclude gas inflow through the gap as the source of solids for regular satellite formation. The second option would make questionable any model that explains the Galilean satellite compositional gradient with subnebula “snow line” arguments; that is, all satellites would presumably start out far from the planet and outside the snowline, and receive their full complement of ices.

These options assume that after gap-opening the disk becomes cool enough, and thus the inflow is weak enough, that icy objects can form. Prior to gap-opening, the inflow is likely to be fast, so that the circumplanetary disk would be too hot (and turbulent) for the concurrent formation of ice-rich satellites like Callisto and Ganymede. Therefore, it is not possible to form a compact disk concurrently with the accretion of ice-rich, close-in satellites, indicating that any satellite formation in a rotationally supported circumplanetary disk likely doesn’t begin until the gas inflow wanes and turbulence decays, or the subnebula gas disk has dissipated.

4. CONDITIONS FOR SATELLITE FORMATION

In the core nucleated accretion model, Jupiter’s formation is thought to occur in three stages (Sec. 2): *nebular*, *transition*, and *isolation*. The circumjovian gas disk forms during the transition
stage of Jupiter’s accretion and should be viewed as a drawn out process that begins after the contraction of the envelope and ends when Jupiter is isolated from the solar nebula: (1) During the nebular stage, most of the solids reside in large planetesimals, some of which may dissolve in the growing envelope during the latter part of this stage. Most of the high-Z mass delivery takes place before the “cross-over” time when the mass of the gaseous envelope grows larger than the core. This stage of growth may be followed by a dilution as the gas accretion rate accelerates. (2) The envelope eventually becomes sufficiently massive to contract and accrete gas from the circumsolar disk hydrodynamically (transition stage). Contraction down to a few planetary radii happens quickly relative to the runaway gas accretion timescale. (3) After envelope collapse, the protoplanet’s mass is still too small for it to clear a significant gap in the surrounding solar nebula, so most of the gas flowing into the Roche lobe accretes onto both the planet and a rotationally-supported compact disk. As the protoplanet becomes more massive, it depletes the gas in its vicinity of the solar nebula, truncating the disk. (4) The nebula gas continues to flow through the Lagrange points (see Fig 4), leading to the formation of an extended disk. Meanwhile, planetesimals in Jupiter’s feeding zone undergo an intense period of collisional grinding, leading to a fragmented population (Sec 4.2). Continued solids enhancement of the entire circumjovian disk occurs due to ablation of disk-crossing planetesimal fragments (see Fig. 7). The accretion of the satellites is expected to occur towards the tail end of Jupiter’s formation, but how satellite formation proceeds largely depends on the level and persistence of turbulence both in the circumsolar and circumplanetary nebulae.

4.1. Turbulence and its Implications for Satellite Accretion

For disks to accrete onto the central object, angular momentum must be transported outwards. For the case of disks around young stellar objects (YSOs), magneto-hydrodynamic (MHD) and self-gravitating mechanisms have been investigated in some detail (e.g., Gammie and Johnson, 2005). The self-gravitating mechanism eventually turns itself off as the gas disk dissipates, at which point MHD may gain relevance. Differentially rotating disks are subject to a local instability referred to as a magneto-rotational instability, or MRI (Balbus and Hawley, 1991). Significant portions of the disk (specifically the planet formation regions) may be insufficiently ionized for MRI to be effective, creating a “dead zone” (Gammie, 1996; Turner et al., 2007), or region of inactivity.

In the absence of an MHD mechanism, one would have to resort to a purely hydrodynamic mechanism. However, it is now known that hydrodynamic Keplerian disks are stable to linear perturbations (e.g., Ryu and Goodman, 1992; Balbus et al., 1996). Possible sources of turbulence, such as convection (Lin and Papaloizou, 1980) and baroclinic effects (Li et al., 2000; Klahr and Bodenheimer, 2003) may provide inadequate, decaying transport in 3D disks (Barranco and Marcus, 2005; Shen et al., 2006), subside as the disk becomes optically thin, and may fail to apply to isothermal portions of the disk. A number of analytical studies have suggested transient growth mechanisms for purely hydrodynamic turbulence that would lead to the excitation of non-linear behavior (Chagelishvili et al., 2003; Umurhan and Regev, 2004; Afshordi et al., 2005). However, numerical simulations (Hawley et al., 1999; Shen et al., 2006) and laboratory experiments (Ji et al., 2006) cast doubt on the ability of purely hydrodynamic turbulence to transport angular momentum efficiently in Keplerian disks, even for high Reynolds number (Lesur and Longaretti, 2005). Although the evidence that Keplerian disks are laminar is not conclusive because the Reynolds numbers in disks are much larger than those accessible to computers or experiments, it is fair to say that what makes disks around YSOs accrete remains an open problem.

While there is a consensus that both the nebula and the subnebula undergo turbulent early phases, we presently lack a mechanism that can sustain turbulence in a dense, mostly isothermal subnebula (Mosqueira and Estrada, 2003a,b). In order to sidestep this problem, one is then forced
to postulate a low density gas disk (Estrada and Mosqueira, 2006), and invoke MRI turbulence to sustain turbulence in such a disk. But here again the likely presence of dust complicates the situation, even in the low density case. Hence, a sufficiently general mechanism for sustaining turbulence in poorly ionized disks has yet to be found, suggesting that alternative mechanisms of disk removal need to be explored. In particular, the role that the planets and satellites themselves play in driving disk evolution has only begun to be explored (Goodman and Rafikov, 2001; Mosqueira and Estrada, 2003b; Sari and Goldreich, 2004).

4.2. Methods of Solids Delivery

There are several ways in which solids can be delivered to the circumjovian disk. Although all of these mechanisms likely played a role in satellite formation, it should be emphasized that at the time of giant planet formation, most of the available mass of solids are in planetesimals in sizes $\gtrsim 1$ km (Wetherill and Stewart, 1993; Weidenschilling, 1997; Kenyon and Luu, 1999; Charnoz and Morbidelli, 2003). In the Jupiter-Saturn region the collisional timescale for kilometer-sized objects is similar to the ejection timescale ($\lesssim 10^5$ years, Goldreich et al., 2004), so that a significant fraction of the mass of solids are fragmented into objects smaller than ~ 1 km (Stern and Weissman, 2001; Charnoz and Morbidelli, 2003). Sufficiently small planetesimals (~ 1 m) are protected from further collisional erosion by gas-drag and by collisional eccentricity and inclination damping. Given that fragmentation likely plays a significant role in the continued evolution of the heliocentric planetesimal population following the formation of Jupiter (Stern and Weissman, 2001; Charnoz and Morbidelli, 2003), the 1 m – 1 km size range of planetesimals likely plays a key role in satellite formation.

I. Break-up and dissolution of planetesimals in the extended envelope. Since the giant planet envelope probably filled a fair fraction of its Roche lobe during a significant fraction of its gas accretion phase, its cross section would have been greatly enlarged (Bodenheimer and Pollack, 1986; Pollack et al., 1996), so that early arriving planetesimals would break up and/or dissolve in the envelope, enhancing its metallicity. In the earliest stages of growth when the envelope mass is low, most planetesimals may reach the core intact. As the gaseous envelope becomes more massive, planetesimals begin to deposit significant amounts of their mass in the distended envelope (e.g., Podolak et al., 1988). Some dust and debris deposited during the extended envelope and relatively rapid envelope collapse phases would have been left behind in any the subnebula.

II. Ablation and gas drag capture of planetesimals through the circumjovian gas disk. Depending on the gas surface density of the subnebula, disk crossers can either ablate, melt, vaporize or be captured as they pass through the disk. Planetesimal fragments in the size range meter-to-kilometer may ablate and be delivered to the subdisk. The total mass budget depends on the surface density of solids in the solar nebula, as well as the deposition efficiency, but it may be possible to deliver more than the mass of the Galilean satellites, a fraction of which could have been lost later due to the inefficiencies of satellite accretion.

III. Collisional capture of planetesimals. Once the planetesimal population has been perturbed into planet-crossing orbits (Gladman and Duncan, 1990), both gravitational and inelastic collisions between planetesimals within Jupiter’s Hill sphere occur. If inelastic collisions occur between planetesimals of similar size, the loss of kinetic energy through their collision may lead to capture, and eventually to the formation of a circumplanetary accretion disk. Gravitational collisions between planetesimals also leads to mass capture.

IV. Dust coupled to the gas inflow through the gap. Essentially all numerical models of giant planet formation indicate that there is flow of gas through the gap, with the strength of the flow dependent on the assumed value of the solar nebula turbulence (e.g., Artymowicz and Lubow, 1996;
None of these studies incorporated dust in their simulations; however, there are numerous arguments as to why dust inflow cannot be the dominant source of solid material (for more discussion, see Mosqueira and Estrada, 2003a; Estrada and Mosqueira, 2006). First, little mass remains in dust at the time of planet formation (Mizuno et al., 1978; Weidenschilling, 1997; Charnoz and Morbidelli, 2003). Second, as was discussed in Sec. 3.3, the specific angular momentum of the inflow through a gap forms an extended disk, which would lead to the formation of satellites far from the planet where they are not observed. Third, the edges of gaps opened by giant planets act as effective filters restricting the size and amount of dust that can be delivered this way (Paardekooper and Mellema, 2006; Rice et al., 2006). Entrained particle sizes would be orders of magnitude smaller in radius than the local decoupling size (~ 1 m at Jupiter). Fourth, the dust content of the inflowing gas may be substantially decreased with respect to solar nebula gas. Embedded planet simulations in 3D show that the gas inflow comes from lower density regions (e.g., see Fig. 4) above and below the midplane (e.g., Bate et al., 2003; D’Angelo et al., 2003b). The typical maximum flow velocity occurs at a pressure scale height. This further restricts particle sizes entrained in the gas inflow.

4.3. Gas-rich Environment

In Section 3, we discussed the formation of a massive circumplanetary disk. Traditionally, the approach has been to calculate (akin to the MMSN) a minimum mass model for the circumjovian disk. In such a model, the total disk mass (gas + solids) is set by spreading the re-constituted mass (accounting for lost volatiles) of the Galilean satellites over the disk and adding enough gas to make the subnebula solar in composition (typically a factor of ~ 100, e.g., Pollack et al., 1994). The total mass of the circumplanetary disk that results from the approach described above is $\sim 10^{-2} M_J$ (note that the disk-to-primary mass ratio for Jupiter is similar to Sun). Interestingly, the total angular momentum of this gaseous disk is comparable to the spin angular momentum of Jupiter (Stevenson et al., 1986; see Table 3, Mosqueira and Estrada, 2003a). Equipartition of angular momentum between planet and disk would result in a massive subnebula.

4.3.1. Decaying Turbulence Satellite Formation Scenario. As long as gas inflow through the gap continues, the circumplanetary disk should remain turbulent (driven by the inflow itself) and continue to viscously evolve. The gas inflow from the circumsolar disk wanes in the gap opening timescale of $< 10^5$ years in a weakly turbulent solar nebula (Bryden et al., 1999, 2000; Mosqueira and Estrada, 2006; Morbidelli and Crida, 2007). As the subnebula evolves, the gas surface density may decrease. Once the gas inflow ceases, a different driving mechanism is needed to facilitate further disk evolution.

This circumplanetary disk environment in which the regular satellites form has been dubbed the Solids Enhanced Minimum Mass (SEMM) disk (Mosqueira and Estrada, 2003a,b), because satellite formation occurs once sufficient gas has been removed from an initially massive subnebula and turbulence in the circumplanetary disk subsides. There are a number of processes that may raise the solids-to-gas ratio and lead to a SEMM disk. In particular, preferential removal of gas (e.g., Takeuchi and Lin, 2002) during the inflow-driven subnebula evolution phase may lead to enhancement of solids in the circumplanetary disk. Ablation of heliocentric planetesimals crossing the disk may result in further enhancement of solids. Such a disk may then be enhanced in solids by a factor of ~ 10 above solar consistent with the solids enhancement observed in the Jovian atmosphere. This factor fits with the solids enhancement in Jupiter’s atmosphere, and is consistent with theoretical constraints based on the condition for gap-opening and satellite formation and migration in such a disk (Sec. 4.3.3). We stress that the properties of a SEMM model are distinct from those of a minimum mass model in terms of disk cooling, and satellite formation and migration.
Figure 7: Vignette of the dominant planetesimal delivery mechanisms (Sec. 4.2) for the two satellite formation environments discussed. In the left window is the gas-poor planetesimal capture (GPPC) model for the circumjovian disk in which processing of planetesimals occurs through planetesimal-planetesimal, and planetesimal-satellite-related collisions. In the right window is the solids-enhanced minimum mass (SEMM) model for the circumjovian disk in which processing of heliocentric planetesimals occurs through their ablation as they pass through the Jovian subnebula. The different scenarios have implications for the compositional evolution of the Galilean satellites. In either case, it is expected that the planetesimal population in the feeding zone of Jupiter (or between Jupiter and Saturn, if Saturn is present) will mostly be scattered away in $\sim 10^4$ years. Some of this material ends up in the circumplanetary disk through collisional capture and/or through direct passage across the disk plane prior to being scattered.

4.3.2. Satellite Growth in the Circumjovian Disk. The growth of satellitesimals and embryos in the circumplanetary disk is controlled first by sweepup of dust and rubble (e.g., Cuzzi et al., 1993; Weidenschilling, 1997). As the inflow from the circumsolar disk wanes and turbulence decays, the inner more massive region becomes weakly turbulent (while the outer extended disk becomes isothermal and quiescent). Once this occurs, dust coagulation and settling are assumed to proceed rapidly, given that dynamical times are $\gtrsim 10^3$ times faster in the inner disk of Jupiter than in the local solar nebula.

Once a significant fraction of the solids in the disk have aggregated into objects large enough to decouple from the gas (radii $R \gtrsim 10 - 100$ m for $\Sigma \gtrsim 10^4$ g) and settle to the disk midplane, they drift inward at different rates due to gas drag, leading to further “drift-augmented” accretion. In the weak turbulence regime, the ratio of the sweepup time (which assumes most of mass of the disk
Figure 8: Left: Idealization of the initial minimum mass Σ and assumed photospheric T profiles for the circumjovian sub nebula. The re-constituted mass of Io, Europa, and Ganymede determine the mass of the optically thick inner disk, while the mass of Callisto is spread out over the optically thin outer disk. Ganymede lies just inside the centrifugal radius r_c, while Callisto lies outside a transition region that separates the inner and outer disks. The temperature is set to agree with the compositional constraints of the Galilean satellites (e.g., Lunine and Stevenson, 1982; Mosqueira and Estrada, 2003a,b), which implies a Jovian luminosity of $\sim 10^{-5} \, L_\odot$, for a planetary radius of $\sim 1.5 - 2 \, R_J$ consistent with planet formation models (Hubickyj et al., 2005). Upper right: Critical mass at which migration stalls as a function of Jupiter radii for various Σ-profiles using both vertically thermally stratified (solid and dotted curves), and vertically isothermal models (bold dashed curve). Gas drag is included. The solid curve corresponds to the minimum mass model, while the dotted and dashed curves correspond to the SEMM model. The short-dashed curve is a constant Σ and T model. Lower right: Migration and growth models for proto-Ganymede. The full sized Ganymede is evolved backward in time from the location where it opens a gap to the point where it reaches embryo size ($\sim 1000 \, \text{km}$) for a SEMM disk. Two models for growth are used. Solid curve: linear growth model. Dotted curve: growth rate proportional to the disk surface density. Growth is consistent with the limited migration of Ganymede. See Mosqueira and Estrada, 2003b for detailed descriptions.

is initially in small particles entrained in the gas) to gas drag is

$$\frac{\tau_{\text{sweep}}}{\tau_{\text{gas}}} \approx \frac{4 \rho_s R}{3 \bar{\rho}_p \Delta v} \frac{4 \rho_s R v_K}{3 C_D \rho (\Delta v)^2} \sim C_D \eta \frac{\rho}{\bar{\rho}_p} < 1,$$

in the inner (and outer) disk. Here, $\bar{\rho}_p$ is the average solids density in the midplane, ρ_s is the satellitesimal density, C_D the gas drag coefficient, and $\eta = \Delta v / v_K$ (e.g., $\eta \sim 10^{-2}$ at Ganymede) measures the difference between v_K and the pressure supported gas velocity. Equation (7) implies that it is possible to form satellites/embryos of any size $< 1000 \, \text{km}$ at any radial location on a faster timescale than their inward migration due to gas drag.

Although perfect sticking is assumed in the sweepup model described above, it is likely that some fragmentation and erosion occurred. In particular, the relative velocities between decoupling
particles and larger, relatively “immobile” satellitesimals are considerably greater in the circumplanetary disk compared to the solar nebula due to much faster dynamical times, which likely resulted in erosive impacts (turbulence exacerbates this problem, Sec. 2.1). In addition, other factors may have contributed to less favorable growth (see Mosqueira and Estrada, 2003a, for more discussion). However, in the SEMM model $\rho/\bar{\rho} \lesssim 10$ due to particle settling, so that Eq. (7) may remain satisfied even for inefficient growth. But, it should be noted that a detailed simulation of the accretion of satellites from satellitesimals in circumplanetary nebulae remains to be done.

Eventually, as the reservoir of dust and rubble is depleted, sweepup is less efficient, and growth of the embryo begins to be controlled by gas drag drift-augmented accretion of satellitesimals and smaller embryos. Satellite embryos pose an effective barrier for inwardly drifting satellitesimals due to high impact probabilities (Kary et al., 1993; Mosqueira and Estrada, 2003a). Thus embryos choke off the supply of material to the inner satellites. The protosatellite formation timescale is determined by the inward drift of the characteristic size of satellitesimals (or embryos) it accretes. In this picture Ganymede (as well as Io and Europa) forms in $\sim 10^3 - 10^4$ years, whereas Callisto takes significantly longer ($\sim 10^6$ years) because it derives solids from the extended low-density outer disk. Nevertheless, the processes that lead to satellite formation are essentially the same in the outer and inner disks. It is important to keep in mind that in the SEMM model, the delivery of material to the circumplanetary disk (either gas or solids) takes place in a $\sim 10^4$ year timescale which is comparable to Ganymede’s formation time, but shorter than that of Callisto.

We emphasize that while satellite embryos form quickly, the SEMM model has full-sized satellites forming on a longer timescale. This is because, unlike traditional minimum mass models, the SEMM model is not a local growth model; i.e., a full-sized satellite formation timescale is controlled by the timescale over which the feeding zone of the embryo is replenished by other embryos or satellitesimals. Thus, the mass of the satellites is spread out over the entire disk, and full-sized satellites must accrete material from well outside their feeding zones. In fact, most of the present day satellite disk is empty, presumably due to gas drag clearing of satellitesimals.

4.3.3. Satellite Survival in a Gas-rich Disk. A gas-rich disk promotes accretion of satellites; however, such a disk can also lead to orbital decay or even loss of satellites on timescales much faster than it would take the circumplanetary gas disk to dissipate. On the one end, gas drag migration (Sec. 2.1) dominates for smaller (e.g., Weidenschilling, 1988), and is the primary mechanism for drift-augmented accretion. On the other end of the size scale, the migration rate of larger objects is determined by the gravitational interaction with a gaseous disk at Lindblad resonances, or gas tidal torque (see Goldreich and Tremaine, 1979). Intermediate-sized protosatellites (~ 1000 km) must contend both with gas drag migration and gas tidal torques that may lead to catastrophically fast (generally inward) migration rates.

As a satellite grows in size, its migration speed increases (the torque is proportional to the mass squared). However, sufficiently large satellites (mass ratio of satellite to planet of $\mu \sim 10^{-4}$) may stall and begin to open a gap (Ward, 1997; Rafikov, 2002b; Mosqueira and Estrada, 2003b). As a consequence of the satellite’s tidal interaction with the disk (and concomitant angular momentum transfer), the satellite can actually drive the evolution of the disk (e.g., Sari and Goldreich, 2004) by producing a local effective viscosity (Goodman and Rafikov, 2001). Admittedly, the physics of disk-satellite interactions is complex. We simply note that other satellite formation models do not rely on gap opening for satellite survival because the gas disk dissipates on a timescale comparable to the satellite formation timescale (Canup and Ward, 2002; Alibert et al., 2005a; Estrada and Mosqueira, 2006).

Mosqueira and Estrada (2003b) explored static models of the Jovian subnebula and determined the conditions under which the largest satellites may stall, open gaps, and survive under gas-rich
conditions. Figure 8 (upper right panel) shows results from these calculations. First, these results indicate that a “minimum mass disk” (solid curve) is likely too massive to allow for the survival of any of the inner disk Galilean satellites, and that a significant decrease in the gas surface density is required for satellite migration to stall (dotted and bold long-dashed curves, SEMM disk). Thus, the gap-opening condition itself argues in favor of a subnebula solids enhancement of a factor of ~ 10 with respect to solar composition. Second, the critical mass for a satellite to stall increases with distance from Jupiter. This allows a satellite to drift in until it finds an equilibrium position, so long as it is sufficiently massive to stall somewhere in the disk. In a regime of limited satellite migration, the largest satellites would tend to be located near the centrifugal radius. Finally, due to the gradient in the disk temperature (taken to be controlled by Jupiter’s luminosity, see Fig. 1), the slopes of the curves in Fig. 8 are shallow, limiting the the range of masses that may stall to mass ratios of $\mu \sim 10^{-4}$. Additionally, the density waves launched by objects of this size shock-dissipate in a length scale smaller than their semimajor axis (Goodman and Rafikov, 2001), which allows the largest satellites to drive the evolution of the disk, open a cavity and stall.

It must be stressed that there are a number of assumptions involved in the results described above. The initial gas surface density has been obtained by placing Callisto in the outer disk, and Ganymede, Europa, and Io in the inner disk, separated by an assumed transition between the outer and the inner disks. However, there are presently no detailed simulations of the formation of such a disk. Furthermore, the temperature structure of the disk is heuristic. Nevertheless, we stress that the overall survival mechanism need not be dependent on the specifics of the model. For instance, Callisto may stall because its migration is halted by the change in the surface density due to the presence of Ganymede. Alternatively, satellites may open gaps collectively. This latter option would be particularly relevant if satellite-disk interactions can lead to the excitation and growth of satellite eccentricities which would result in spatially extended gap formation. Another process to consider is photoevaporation, which may take place in a timescale comparable to that of the formation and migration of Callisto (and Iapetus for Saturn). The key point here is that the largest satellites of each satellite system, and not disk dissipation due to turbulence, may be responsible for giant planet satellite survival.

Finally, it is useful to evaluate whether migration times are consistent with the growth timescales of the Galilean satellites. This calculation serves to provide an estimate of how far a satellite may have migrated. By associating the current locations of the satellites with their stalling location (Fig. 8, upper right panel), Mosqueira and Estrada (2003b) integrated the migration of the full-sized Ganymede back in time to embryo size using different growth models (Fig. 8, lower right panel). Here again, migration and formation of full-sized satellites is taken to occur in a subnebula enhanced in solids by a factor of ~ 10 with respect to solar composition mixtures. These results imply that SEMM disks are consistent with the limited migration of at least Ganymede, so that Ganymede likely formed close to the location of the centrifugal radius, r_c.

4.4. Gas-poor Environment

In the gas-poor scenario sustained turbulence (possibly hydrodynamic turbulence) or some other mechanism removes the gaseous circumplanetary disk quickly compared to the accretion timescale of the satellites (which is tied to the timescale for clearing heliocentric planetesimals from the giant planet’s feeding zone). By construction, in this model this timescale is $\sim 10^5 - 10^6$ years. The issue arises whether delivery of planetesimals can last for this long. In Sec. 4.5.2, we discuss possible ways to lengthen the planetesimal delivery timescale. Thus, satellite formation is taken to be somewhat akin to the formation of the terrestrial planets as the gas surface density is taken to be low but is left unspecified.
The gas-poor environment does not face the survival issues associated with the presence of significant amounts of gas; yet, the remnant circumplanetary gas disk may still circularize orbits, or clear the disk of collisional debris. The way in which the solid material that makes up the satellites is delivered to the circumplanetary disk must differ significantly from the gas-rich case. This scenario relies on the formation of an accretion disk resulting from the capture into circumplanetary orbit of heliocentric planetesimals undergoing inelastic collisions (Safronov et al., 1986; Estrada and Mosqueira, 2006; Sari and Goldreich, 2006), or gravitational scatterings (Goldreich et al., 2002; Agnor and Hamilton, 2006) within the Jovian Hill sphere (see Sec. 4.2). Furthermore, here the angular momentum of the satellite system is largely determined by circumsolar planetesimal capture dynamics.

4.4.1. The Circumplanetary Swarm. The idea that the regular satellites could form out of a collisionally-captured, gravitationally-bound swarm of circumplanetary planetesimals has been suggested and explored in a number of classic publications (Schmidt, 1957; Safronov and Ruskol, 1977; Ruskol, 1981, 1982; Safronov et al., 1986). However, it has only been recently that a GPPC (gas-poor planetesimal capture) model has been advanced (Estrada and Mosqueira, 2006). Collisional capture mechanisms have been explored in terms of general accretion (Sari and Goldreich, 2006), and applied to the formation of Kuiper Belt binaries (Schlichting and Sari, 2007).

The GPPC formation scenario is separated into two stages: an early stage in which the circumplanetary disk is initially formed, and a late stage in which a quasi-steady state accretion disk is in place around the giant planet. The basic idea is that in the early stage, inelastic and gravitational collisions within the Hill sphere of the giant planet lead to the creation of a protosatellite “swarm” of both retrograde and prograde planetesimals extending out as far as circumplanetary orbits are stable, $\sim R_H/2$. At present, the complicated process of circumplanetary swarm generation remains to be modeled.

Estrada and Mosqueira (2006) treat the late stage of satellite formation in a gas-poor environment in which a circumplanetary accretion disk is assumed to be already present, focusing on inelastic collisions between incoming planetesimals with larger planetesimals within the accretion disk as the mass capture mechanism. Planetesimal-planetesimal collisions can lead to the capture of solids if the incoming planetesimal encounters a mass comparable to, or larger than itself (Safronov et al., 1986).

Since the circumplanetary disk has a significant surface area, the total mass of planetesimals that crosses the subdisk may be substantial. A reasonable estimate of the amount of mass in residual planetesimals in Jupiter’s feeding zone is $\sim 10 M_\oplus \sim 10^{29}$ g. These planetesimals may cross the circumplanetary disk a number of times before being scattered away by Jupiter, and thus may be subject to capture. The amount of mass captured depends on the size distribution, and total mass of planetesimals in the accretion disk, as well as the timescale over which heliocentric planetesimals are fed into the system.

Not all of the mass delivered to the circumplanetary disk is accreted by the regular satellites. Bound objects may be dislodged by passing planetesimals, or during close encounters between the giant planets during the excitation of the Kuiper Belt, as in the Nice model (Tsiganis et al., 2005). Also, planetesimals may be accreted onto the planet or lost by an ejection resonance (Nesvorny et al. 2003). The timescale constraint imposed by Callisto’s partially differentiated state would require that Callisto must form in $\gtrsim 10^5$ years, so that the feeding timescale of planetesimals should be at least this long. A condition for the GPPC model to satisfy the Callisto constraint is that the mass of the extended disk of solids at any one time (excluding satellite embryos) is typically a small fraction of a Galilean satellite (Estrada and Mosqueira, 2006).

Collisions in the circumplanetary disk can lead to fragmentation, accretion, or the removal of
Figure 9: **Left**: Mass (dotted lines) and angular momentum (solid lines) normalized to the values characteristic of the Galilean satellites ($M_{\text{sats}} \sim 4 \times 10^{26}$ g, $L_{z,\text{sats}} \sim 4 \times 10^{43}$ g cm2 s$^{-1}$) delivered to the circumplanetary disk in $\tau_{\text{acc}} = 10^6$ years as a function of gap size for several values of the solids surface density of the solar nebula. Surface density is expressed in terms of the MMSN value, $\sigma_{M \text{M}} = 3.3$ g cm$^{-2}$ (cf. Fig. 1). A cold planetesimal population ($\theta_1 \sim 100$ where $\theta_1 = 0.5(v_e/v_1)^2$ is the Safronov parameter; cf. Eq. 2) is assumed. Solutions for the given parameters are indicated by a pointer to where corresponding lines of M and L_z intersect. **Right**: Corresponding solutions for the specific angular momentum. In these plots, the “optical depth” τ_{z2} is the collision probability between the largest satellite simulants in the circumplanetary disk, and the planetesimal scale height is $\sim v_z/\Omega$. See Estrada and Mosqueira, 2006 for details.

material from the outer to the inner portions of the disk, where the satellites form. This collisional removal of material (to the inner disk) is assumed to be replenished by the collisional capture of heliocentric planetesimal fragments. Removal of material from the outer regions to the inner regions can occur because the net specific angular momentum of the planetesimal swarm (which consists of both retrograde and prograde planetesimals) results in a much more compact prograde disk.

4.4.2. Angular Momentum Delivery

Initially, the specific angular momentum ℓ_z is small, but as the planet begins to clear its feeding zone, sufficient planetesimals are fed from the outermost regions of the feeding zone where inhomogeneities in the circumstellar planetesimal disk significantly increases ℓ_z of the circumplanetary swarm (Lissauer and Kary, 1991; Dones and Tremaine, 1993; Estrada and Mosqueira, 2006), whether they may or may not be captured (see below). Estrada and Mosqueira (2006) posited that these collisional processes may deliver enough ℓ_z to account for the total mass and angular momentum contained in the Galilean satellites. Solutions in Fig. 9 were found for a range of gap sizes in the heliocentric planetesimal population, $R_{\text{gap}} \sim 0.5 - 1.5 R_{\text{H}}$. In this case, a gap refers to a depletion of solids in the circumstellar disk, analogous to a gas gap. As can be seen from Fig. 9 (right panel), the specific angular momentum contribution increases as the solids gap grows larger. The total amount of mass and angular momentum that can be delivered is limited by the size of the planet’s feeding zone, roughly $R_{\text{gap}} \sim 2.5 R_{\text{H}}$. Thus, the angular momentum is seen to reach a maximum before beginning to decrease sharply as the gap size chokes...
off the mass inflow. The mass inflow will drop to nearly zero unless there are mechanisms that can replenish the solids in the planet’s feeding zone.

4.5. Satisfying the Constraints

4.5.1. The Compositional Gradient. Io is rocky, Europa is ∼ 90% rock, ∼ 10% water-ice, whereas Ganymede and Callisto may be only ∼ 50% rock, and ∼ 50% water-ice by mass (Sohl et al., 2002). There are three main explanations for this observation. The first ascribes the high-silicate fraction of Europa relative to Ganymede and Callisto to the subnebula temperature gradient due to Jupiter’s luminosity at the time of satellite formation (e.g., Pollack et al., 1976; Lunine and Stevenson, 1982). In this view, Ganymede’s temperature is typically set at $T \sim 250$K to allow for the condensation of ice at its location. Closer in, a persistently hot subnebula would prevent the condensation of volatiles close to Jupiter (Pollack and Reynolds, 1974; Lunine and Stevenson, 1982). In the optically thick case, this may imply a planetary luminosity $\sim 10^{-5} L_\odot$ (where $L_\odot = 3.827 \times 10^{33}$ ergs s$^{-1}$ is the solar luminosity) for a planetary radius of $1.5 - 2 \, R_J$. However, this picture runs into trouble because the inner small satellite Amalthea (located at $\sim 2.5 \, R_J$, Io is at $\sim 6 \, R_J$) has such a low mean density ($0.161 \, g \, cm^{-3}$) that models for its composition require that water-ice be a major constituent, even for improbably high values of porosity (Anderson et al., 2005).

An alternative explanation argues that the compositional gradient may be due to the increase of impact velocities and impactor flux of Roche-lobe interlopers deep in the planetary potential well, leading to preferential volatile depletion in the cases of Io and Europa (Shoemaker, 1984). In this view, all of the Galilean satellites would start out ice-rich, but some would lose more volatiles than others. One might expect a stochastic compositional component deep in the planetary potential well due to high speed $\gtrsim 10 \, km \, s^{-1}$ impacts with large (perhaps $\sim 10 - 100 \, km$) Roche-lobe interlopers. Such hyperbolic collisions might conceivably remove volatiles from the mantle of a differentiated satellite and place them on neighboring satellites (possibly analogous to the impact that may have stripped Mercury’s mantle; Benz et al., 1988). This might then explain the volatile depletion in Europa relative to Ganymede and Callisto, but needs to be quantitatively evaluated. A third possibility is that Io, and possibly Europa, can lose their volatiles due to the Laplace resonance alone. A similar argument may apply to Enceladus and other mid-sized saturnian satellites. Amalthea then may be a remnant of such a collisional process. The gas-poor satellite accretion environment (Sec. 4.4) fits with this scenario, although a stochastic component may also apply to the gas-rich case.

4.5.2. The Callisto Constraint. If Callisto is partially differentiated, it argues that Callisto’s formation took place over a timescale $\gtrsim 10^5$ years (Stevenson et al., 1986; Mosqueira et al., 2001; Mosqueira and Estrada, 2003a,b; Canup and Ward, 2002; Alibert et al., 2005a; Estrada and Mosqueira, 2006). A long formation timescale may be required because the energy of accretion must be radiated away (Safronov, 1969; Stevenson et al., 1986) to avoid melting the interior. Proper treatment of this problem should include the effects of an atmosphere (Kuramoto and Matsui, 1994), which allows for hydrodynamic and collisional blow-off, or convective transport to the subnebula (Lunine and Stevenson, 1982). Yet, non-hydrostatic mass anomalies at the boundary of the rocky core could still imply a differentiated state (McKinnon, 1997; Stevenson et al., 2003).

Assuming hydrostatic equilibrium, the simplest interpretation for Callisto’s moment of inertia is a satellite structure consisting of a 300 km rock-free ice shell over a homogeneous rock and ice interior (Anderson et al., 2001; Schubert et al., 2004). The magnetic induction results may imply that an ocean occupies the lowermost part of Callisto’s icy shell (Zimmer et al., 2000). If Callisto’s internal structure is primordial, and it was accreted homogeneously, impacts during the late-stages of its growth can be used to raise the temperature of the surface regions of the satellite to the
melting point and to supply the latent heat of melting (and vaporization), possibly leading to partial differentiation of just the surface layers.

On the other hand, the energy liberated by the sinking rocky component can eventually lead to a runaway process (Friedson and Stevenson, 1983). Moreover, both radiogenic heating and the presence of ammonia in the interior can result in a more stringent constraint on Callisto’s thermal history. The relevance of these factors is uncertain: although ammonia may help to sustain an ocean in Callisto (inferred to be present from Galileo magnetometer data; Zimmer et al., 2000), salts concentrated in the liquid layer and/or a satellite surface regolith can also help in this regard (Spohn and Schubert, 2003); and the addition of 26Al, as specified by CAIs, depends on the assumption of spatial and temporal homogeneity (see Wadhwa et al., 2007 and references therein; Castillo-Rogez et al., 2007). We stress that the likely presence of an ocean means that melting did take place, presumably during satellite accretion. Furthermore, the possible presence of ammonia need not result in full differentiation (Ellsworth and Schubert, 1981).

A number of explanations for the Callisto-Ganymede dichotomy have been offered that rely on fine-tuning uncertain parameters (Schubert et al., 1981; Lunine and Stevenson, 1982; Friedson and Stevenson, 1983; Stevenson et al., 1986). Showman and Malhotra (1997) proposed an explanation based on the Laplace resonance; yet, it is unclear that Ganymede suffered sufficient tidal heating to explain the differences between the two satellites.

The differences between Ganymede and Callisto can instead be a consequence of the disk formation and evolution scenario described in Sec. 4.3 in which Callisto’s formation time is long compared to that of Ganymede. In this SEMM model, Callisto’s accretion timescale is tied to the disk clearing timescale ($\sim 10^6$ years; Mosqueira and Estrada, 2003a). That is, in this view Callisto derives its full mass from satellitesimals in the extended outer disk that are brought into its feeding zone by gas drag migration. On the other hand, because Callisto poses an effective barrier for inwardly migrating objects, Ganymede must derive most of its mass from a more compact, denser region inside of Callisto’s orbit, resulting in a much shorter accretion timescale ($\lesssim 10^4$ years). This means that while Callisto may have enough time to radiate away its energy of accretion Ganymede does not. This explanation for the Ganymede-Callisto dichotomy does not require special pleading for Callisto, but rather relies on its outer location to explain its accretional and thermal history. Note that a similar formation timescale would also apply to Iapetus in the Saturnian system for the same reason, i.e., its outermost location would lead to long disk clearing times, which is directly tied to the satellite accretion time.

We stress that in the SEMM model, a natural outcome of a gas surface density distribution with a long tail out to the location of the irregular satellites is the formation of some satellites in dense inner portions, and others in extended regions of the disk. In this context, the large separation between Titan and Iapetus provides strong indirect evidence for a two-component subnebula. Therefore, it is not surprising that the same can be said for both Jupiter’s and Saturn’s regular satellites; i.e., Ganymede and Titan formed in more compact, higher density regions of the disk than did Callisto and Iapetus. Finally, we point out that it is implausible to argue that the region between Callisto and the irregular satellites was empty. The solids that must have resided there had to be cleared and most ended up accreting onto Callisto, which accounts for its longer formation timescale.

An additional concern is that impacts with large embryos could result in Callisto’s differentiation (McKinnon, 2006). In the SEMM model, typical radii of inwardly migrating embryos that form in the outer disk are $\sim 200 – 500$ km. However, these embryo sizes should not be confused with the typical sizes of the objects that accrete onto Callisto. Characterizing typical impactor sizes requires treatment of the interaction between a late-stage protosatellite and a swarm of satellitesimals, including the effects of collisional fragmentation.
Work by Weidenschilling and Davis, (1985) shows that a combination of gas drag and perturbations due to mean motion resonances with a planet (or satellite) has important consequences for the evolution of planetesimals (or satellitesimals/embryos). Inwardly migrating embryos can be readily captured into resonance before reaching Callisto (note that Hyperion is in such a resonance with Titan). Malhotra (1993) points out, though, that resonance trapping is vulnerable to mutual planetesimal (or satellitesimal) interactions, so that as the embryos approach a satellite collisions among the embryos are expected to be destructive (see Agnor and Asphaug, 2004 for an analogous argument for planets), grinding them down and knocking them out of resonance. In this view, Hyperion (radius \(\sim 150 \text{ km}\)) might represent a collisional remnant or survivor of such a collisional cascade. It is reasonable to expect that Hyperion-like or smaller objects might be typical impactors in the late-stage formation of Callisto (and Titan). Furthermore, one might expect such impactors to be porous, of low density (\(\sim 0.5 \text{ g cm}^{-3}\)), and likely undifferentiated, all of which tend to favor shallower energy deposition during satellite accretion. The question then becomes whether Callisto’s \(\sim 10^6\) year accretion from Hyperion-like (or smaller), porous impactors striking the satellite at its escape speed would result in a partially differentiated state. This problem remains to be tackled in detail.

Alternatively, models that make Ganymede and Callisto in the same timescale rely on fine-tuning unknown parameters to explain the differences between these two satellites. This also applies to the gas-poor GPPC model, which forms both Callisto and Ganymede by the delivery of small collisional fragments and debris to the circumplanetary disk over a long timescale. Yet, the planetesimal clearing timescale in the Jupiter-Saturn region is \(\sim 10^4\) years (Charnoz and Morbidelli, 2003). Note that in the Nice model (Tsiganis et al., 2005), the timescale for planetesimal delivery could be even shorter since Jupiter and Saturn are initially closer together. Therefore, a challenge in the GPPC model is to deliver enough mass at later times to lead to the formation of a partially differentiated Callisto. Possible ways to lengthen the planetesimal delivery timescale include stirring of the circumsolar disk by Uranus and Neptune, and planetesimal replenishment by gas-drag inward migration of meter-sized bodies.

In conclusion, it is important to point out that neither of the disk models discussed in Sections 4.3 and 4.4 hinges on Callisto’s internal state. If Callisto turns out to be differentiated, both models remain viable even if Callisto forms in a shorter timescale.

5. SUMMARY

We have attempted to provide a broad picture of the origin of the Jovian system from the accumulation of the first generation of planetesimals to the birth of the magnificently complex system we see today. We have summarized our current understanding of the various stages of Jupiter’s formation with the support of the most current numerical models of its accretion. There are several issues that still need to be addressed in models that treat Jupiter’s growth (see, Lissauer and Stevenson, 2007); most notably, more realistic opacity models for the giant planet envelope need to be implemented (e.g., Movshovitz and Podolak, 2007). This issue is tied to requirement that Jupiter form faster than the nebula dispersal time. Yet, the level of sophistication in these growth models continues to improve.

We have identified where the circumplanetary disk, a by-product of Jupiter’s later stages of accretion, fits into Jupiter’s formation history. There are two components to this disk: a more radially compact disk that forms as a result of the accretion of low specific angular momentum gas during a period after envelope contraction and prior to opening a deep gap in the solar nebula; and,
a more radially extended disk which arises as a result of continued gas inflow through a deep gap as Jupiter approaches its final mass. The resulting disk may be initially massive, as one might expect from a rough equipartition of angular momentum between the planet and disk (e.g., Stevenson et al., 1986), but is expected to evolve at least until the gas inflow wanes. The subnebula may thus play a key role in determining the final spin angular momentum of Jupiter.

Presently, planetary formation models tend to focus on either the growth of the planet in the spherically symmetric approximation, or a protoplanet embedded in a circumstellar disk in the presence of a well-formed gap. As a result, our understanding of the formation of the circumplanetary disk remains incomplete. Furthermore, no simulations yet exist that model disk formation from envelope contraction to the isolation of the giant planet, when accretion ends. Thus, caution must be exercised in interpreting current numerical results. One important result from recent numerical simulations, however, is that the size of the circumplanetary disk formed is dependent on the specific angular momentum of the gas flowing into the planet’s Roche lobe, which in turn depends on whether a deep gap is present or not. Gap-opening may take place towards the tail end of the runaway gas accretion phase as Jupiter approaches its final mass. If the architecture of the Solar System were such that Saturn began much closer to Jupiter (as in the Nice model, Tsiganis et al., 2005), disk truncation would be accomplished jointly.

How the circumjovian gas disk evolves over time is dependent on the level of both solar nebula and subnebula turbulence. It is expected that as long as there is inflow through the giant planet gap, it will drive subnebula evolution. However, whether or not there is a sustained, intrinsic source of turbulence in the circumplanetary disk has a profound effect on the environment in which the Galilean satellites formed. We have offered examples of different pathways to satellite growth and survival dependent on if one posits sustained turbulence, or turbulence decays once the gas inflow subsides. The assumption leads to two qualitatively different formation environments that can account for the angular momentum of the regular satellites. Either model can in principle allow for a differentiated or partially differentiated Callisto.

In addition, both models rely on planetesimal delivery mechanisms to provide the mass necessary to form the satellites, and do not rely on dust entrained in the gas inflow to deliver solids. The compositional diversity and potential similarities in the primordial compositions of the satellites of Jupiter and Saturn (Hibbitts, 2006) hint that Jupiter and its satellite system may be derived from planetesimals formed locally as well as in more distant regions of the solar nebula. The overall implication then is that planetesimal delivery mechanisms likely provide the bulk of material for satellite accretion, regardless of the gas mass contained in the circumplanetary disk.

Finally, as the inventory of discovered extrasolar planets increases, the subject herein gains in relevance. In most cases, there are dynamical differences between these newly discovered planetary systems and our own. Yet, having an understanding of Jupiter’s formation from its beginning to its late stages serves as a benchmark to our general understanding of giant planet formation, and, by analogy, of the formation of the satellite systems which likely await as secondary discoveries around these extrasolar giants.

Acknowledgements. We would like to thank D. Stevenson and S. Weidenschilling for their reviews of this work. We also thank B. McKinnon for a thorough reading of the manuscript and suggestions on how to improve its exposition. P.R.E. acknowledges the support of a grant from NASA's Origins of Solar Systems (SSO) program.

REFERENCES

