Planets are different from rocks/gas clouds b/c their interiors have different properties than their exteriors.

1. Comparing pressure from gravity to electronic binding energy:

\[\frac{GMm}{R^2} \sim E_{\text{bind}} \Rightarrow R \sim \begin{cases} 3000 \text{ km} & \text{for rocky bodies (} E_{\text{bind}} \sim 1 \text{ eV)} \\ 1000 \text{ km} & \text{for icy bodies (} E_{\text{bind}} \sim 0.1 \text{ eV)} \end{cases} \]

\(R@ = 6300 \text{ km, for comparison} \)

2. This is the radius at which material phase transitions start to happen b/c of gravity.

3. Assuming all heat from formation goes into internal heating:

\[\frac{GM^2}{R} \sim MC_P \Delta T \Rightarrow \Delta T \sim \begin{cases} 40,000 \text{ K for Earth} \\ 4,000 \text{ K for ice} \\ 400 \text{ K for hydrogen @ 1 g-cm}^{-3} \end{cases} \]

This estimate is too high in part because a lot of formation energy is radiated away.

4. Let’s get at \(\Delta T \) a different way. Fourier’s law of conduction (analogous to diffusion):

\[\frac{dT}{dr} \propto \frac{dQ}{dt} \frac{1}{4\pi r^2} \Rightarrow \frac{dQ}{dt} \propto \text{volume, since the amount of heat radiated} \]

\[\frac{dT}{dr} \propto \frac{r^3}{r^2} \]

\[\Rightarrow R \sim \begin{cases} 1000 \text{ km} & \text{for } \Delta T \sim 1000 \text{ K (melting point of rock)} \\ 300 \text{ km} & \text{for } \Delta T \sim 100 \text{ K (melting point of ice)} \end{cases} \]

Planets are electronically cold (i.e. not ideal gases; internal energy comes from material bonds) but ionically hot (there is enough heat to melt the material). Another way...
to say this is that for some amount of temperature change ΔT, a planet's volume won't change very much (but a star's will. Stars can be described as ideal gases).