The entropy of mixing term is always negative (since \(\ln(a) < 0 \) if \(a < 1 \)), so as \(T \to 0 \), the entropy of the mixture goes to:

\[
G = N_1 G_1 + N_2 G_2 + \frac{N_1 N_2 \Delta G}{N_1 + N_2}
\]

For \(\Delta G > 0 \), \(G \) is always greater than the total entropy of the unmixed phases (which is \(N_1 G_1 + N_2 G_2 \)). Since the Gibbs energy of the unmixed phases will always be lower than the entropy of the mixed phases (for low \(T \)), the system will exhibit phase separation.

b. We want the temperature at which:

\[
G_{mix} \leq G_{separate}
\]

for all \(N_1, N_2 \).

\[
N_1 G_1 + N_2 G_2 + \frac{N_1 N_2 \Delta G}{N_1 + N_2} + k_B T \left[N_1 \ln \left(\frac{N_1}{N_1 + N_2} \right) + N_2 \ln \left(\frac{N_2}{N_1 + N_2} \right) \right]
\]

\[
\leq N_1 G_1 + N_2 G_2
\]
$$k_B T_{\text{phase transition}} = \frac{-N_1 N_2 \Delta G}{(N_1 + N_2) \left[N_1 \ln \left(\frac{N_1}{N_1 + N_2} \right) + N_2 \ln \left(\frac{N_2}{N_1 + N_2} \right) \right]}$$

This defines the phase transition curve for some N_1 & N_2. We want the temp above which, for any N_1 & N_2, both phases will mix.

It’s apparent from the phase curve plotted below that the maximum T_{phase} occurs at $x_i = \frac{N_1}{N_1 + N_2} = 0.5$.

So to get T_c, we evaluate the above at $x_i = x_2 = 0.5$.

$$T_c = \frac{-0.5 \times 0.5 \Delta G/k_B}{0.5 \ln (0.5) + 0.5 \ln (0.5)}$$

Here’s the phase diagram:

![Phase diagram](image)
c. The number fraction of Ne atoms is
\[
\frac{1}{6} \text{(cosmic Ne fraction)} = \frac{1}{6} \left(1.1 \times 10^{-4}\right),
\]
and the number fraction of hydrogen is 0.92 (assumed same as cosmic abundance). Plugging these values into \(\text{A} \) \((x_1 = 1.8 \times 10^{-5}/(0.92 + 1.8 \times 10^{-5}) = 1.9 \times 10^{-5},
\]
x_2 = 0.92/(0.92 + 1.8 \times 10^{-5}) = 0.99998\) at the temperature in Jupiter’s atmosphere (6000 K), we can solve for the minimum possible \(\Delta G \) required for the two phases to be insoluble (“separate phases” above):

\[
\Delta G_{\text{min}} = 6.1 \text{ eV}
\]

Keep in mind that this is ~ the strength of covalent bonds in rocks! This is a very high \(\Delta G \) for mixed gases.

8.2.a. Equation 10 in the chapter gives a diffusion equation for conductivity:

\[
\sigma = \frac{n e^2 \zeta}{m}
\]
m is the mass of the charge carrier (protons in this case), e is the proton charge, \(n \) is the number density of charge carriers, and \(\tau \) is the relaxation time.

We're given that the density is 2 g/cm\(^3\), and we have one free proton per water molecule. So:

\[
n = \frac{e}{m_{\text{H}_2\text{O}} \cdot m_p}
\]

\[
= \frac{1}{16} \quad \text{(or 18 including two H, but oxygen dominates)}
\]

\[
= 6.6 \times 10^{22} \text{ cm}^{-3} = 6.6 \times 10^{28} \text{ m}^{-3}
\]

Next, let's get \(\tau \). To get a time, we need a distance and a velocity. The distance is the internuclear spacing, which is \(n^{-1/3} \Rightarrow \)

\[
\ell \equiv n^{-1/3} = 2 \times 10^{-8} \text{ cm}
\]

(makes sense: 1 Å = 10^{-8} cm

The velocity is the thermal velocity. There's a rigorous way to do this (using a Maxwell distribution), but the OoM way to get the thermal velocity is:

\[
\frac{1}{2} m_p v_{th}^2 \sim k_B T
\]

\[
v_{th} \sim \sqrt{\frac{2k_B T}{m_p}}
\]
Oh! Now let's get the characteristic time:

$$\tau = \frac{\lambda}{v_{th}} = \frac{2 \times 10^{-9} \text{ cm}}{10^6 \text{ cm/s}} = 2 \times 10^{-14} \text{ s}$$

Putting it all together (using units Dave indicates):

$$\sigma \approx \frac{(6.6 \times 10^{29} \text{ m}^{-3}) (1.6 \times 10^{-19} \text{ C})^2 (2 \times 10^{-14} \text{ s})}{(1.6 \times 10^{-27} \text{ kg})}$$

$$= 2 \times 10^9 \Omega^{-1} \text{ m}^{-1}$$

$$= \boxed{200 \, \Omega \cdot \text{cm}^{-1}} \quad \text{(same OoM as figure!)}$$

b. Now we use the mean Fermi energy to calculate the mean velocity of the charge carriers:

$$E_F = \frac{2.21}{r_s^2} \text{ Ryd} \quad \text{[eq 3.20]}$$
Let's get \(r_s \) using the given density value.

\[
a_0 r_s = \left(\frac{\mu m_H}{e} \right)^{1/3} \quad \text{**\(\mu = 2 \) since we're considering \(\text{H}_2 \)}
\]

\[
rs = 2.8
\]

OK, next set \(E_F \) equal to something with velocity in it to get the mean velocity of charge carriers:

\[
E_F = \frac{1}{2} m e V_F^2
\]

\[
\frac{2.21}{r_s^2} \text{ Ryd} = \frac{e}{2} m e V_F^2
\]

\[
\text{**1 Ryd} = 13.6 \text{ eV} = \frac{13.6}{6 \times 10^{-10}} \text{ erg}
\]

\[
\Rightarrow \quad V_F = \left[\frac{2 \sqrt{2.21}}{r_s} \times \frac{13.6}{6 \times 10^{-10} \times m_e} \text{ erg} \right]^{1/2}
\]

\[
= 10^8 \text{ cm/s}
\]

[Leaves faster than speed above, but still 100x slower than light speed. Makes sense that electrons move faster since they're less massive.]

We have a speed, we have a length (\(r_s a_0 \))... let's get a time!
\[Z = \frac{1}{V_F} \]
\[= \frac{2.8a_0}{10^8 \text{ cm/s}} \]
\[\approx 10^{-16} \text{ s} \]

All right, we have everything we need to calculate conductivity.

\[\sigma = \frac{n e^2 c}{m_e} \]
\[= \left(\frac{\ell}{n m_p} \right) e^2 c \]
\[\approx \frac{Me}{(3 \times 10^{29} \text{ m}^{-3})(1.6 \times 10^{-19} \text{ C})^2 (10^{-16} \text{ s})} \]
\[\approx 9 \times 10^{-31} \text{ kg} \]

\[\approx 9 \times 10^5 \Omega^{-1} \text{ m}^{-1} \]
\[= 9 \times 10^3 \Omega^{-1} \text{ cm}^{-1} \]

Pretty close to results at highest pressure in figure.
8.4.a. \(\frac{GM^2}{R} \sim MC \Delta T \)

\[\Delta T \sim \frac{GM}{AC} \]

Plug in \(R = 50 \text{ km}, C = 8 \times 10^6 \text{ ergs/g/K} \),
and \(M = 4 \rho R^3 = 1.7 \times 10^{21} \text{ g} \).

\[\boxed{\Delta T \sim 3 \text{ K}} \]

\(\nu \) small, ok to ignore.

b. For this problem, \(r = 0 \) @ the center and \(r = R \)
at the surface. Initial temp is 0 everywhere
\((T(r, t=0) = 0) \) and surface temp is always
0 \((T(r=R, t) = 0) \).

\[\int_0^t \frac{\partial T(r;o,t)}{\partial t} dt + \int_0^\infty \left[\frac{\partial}{\partial t} T(r;o,t) + \frac{4}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T(r;o,t)}{\partial r} \right) \right] d+ \]

\[T(r;o,t) = A \int_0^\infty D^2 T(r;o,t) d+ - \left[A T_m \exp \left(-\frac{t}{\tau} \right) \right] \]

\[T(r;o,t) = A T_m \left(1 - e^{-\frac{t}{\tau}} \right) + A \int_0^t D^2 T(r;o,t) d+ \]

\(= 0 @ \text{ center} \)
\[T(r=0,t) = AT_m (1 - e^{-t/\tau}) \leq 1 \text{, so } T(r=0,t) \leq AT_m \]

and if \(A < 1 \), then
\[T(r=0,t) \leq T_m . \]

c. \[O = KD^2 T + AT_m \frac{e^{-t/\tau}}{z} \]

By symmetry, \(T \) must be independant of \(\theta \) and \(\varphi \), so
\[D^2 T = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) . \]

\[O = k \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) \right] + \frac{AT_m}{z} e^{-t/\tau} \]

Let's try separation of variables.
\[T(t,r) = C(r) B(t) . \]

Then:
\[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C}{\partial r} \right) = B \left[\frac{\partial^2 C}{\partial r^2} + \frac{2}{r} \frac{\partial C}{\partial r} \right] . \]

Plugging this back into our equation gives:
\[\frac{\partial^2 C}{\partial r^2} + \frac{2}{r} \frac{\partial C}{\partial r} = -AT_m \exp \left(-\frac{t}{\tau} \right) \]
Now assume $C(r) = -r^2 + d$ and plug in to solve for x:

$$-2 - 4 + \lambda = 0$$

$$\Rightarrow \lambda = 6$$

The boundary conditions require that $C(r=\lambda)|_{\lambda=0}$, so $d = \lambda^2$. We now have an expression for $C(r)$:

$$C(r) = \lambda^2 - r^2$$

Next we can get $B(t)$ using our equation for λ:

$$-\lambda = -\frac{ATn}{BCK} \exp(-t/\tau)$$

$$\downarrow$$

$$\lambda = 6$$

$$B = \frac{ATn}{6CK} \exp(-t/\tau)$$

Putting everything together, we have:

$$T(r,t) = C(r)B(t)$$
\[
\frac{A T_m (R^2 - r^2)}{6 \pi \chi} \exp \left(-\frac{r}{\chi}\right)
\]

d. \quad R_c = \sqrt{6 \pi \chi}

= \sqrt{6 (0.01 \text{ cm}^2/\text{s}) (10^6 \text{ yr}^{-1})}

= 14 \text{ km}