Division of Geological and Planetary Sciences.

Science progresses by a process called hypothesis testing, which involves proposing an idea and then subjecting it to experimental tests. However, someone has to initially propose scientifically plausible hypotheses for this process to work. Prof. Kirschvink has originated several such ideas aimed at increasing our understanding of how biological evolution has influenced, and has been influenced by, major events on the surface of the Earth. In more-or-less chronological order, the major contributions include:

The idea that the magnetic field sensitivity in animals might be due to small chains of the same biogenic magnetite functioning as specialized sensory organelles; this work has provided a solid biophysical basis for understanding magnetic effects on animal behavior, and has actually led to the discovery of candidate sensory organs in higher animals.
Click to read more about magnetite-based magnetoreception.
Another major idea is that biogenic magnetite produced by the magnetotactic bacteria ("magnetofossils") might be responsible for the magnetization of some sedimentarty rocks; these magnetofossils now provide the strongest evidence for early life on the planet Mars.
Click to read more about the magnetofossils, from Mars to Earth?
An idea that is generating much interest recently is that the entire Earth may have actually frozen over several times in Earth history, resembling a "Snowball", potentially causing some of the most severe criseses is history of life on Earth and perhaps stimulating evolution.
Click to read more about The Snowball Earth Hypothesis. (Possibly the worst climatic disasters in Earth history)
Another original concept is that the Cambrian Evolutionary explosion may have been precipitated in part by large burst of true polar wander, in which the Earth's rotational axis moved to the equator in a geologically short interval to of time.
Click to read more about The Cambrian Evolutionary Explosion, and the Inertial Interchange True Polar Wander Hypothesis
And, that the burst of biomineralization observed in the fossil record at the Cambrian Explosion may have resulted from the evolutionary exaptation of the magnetite biomineralization system. A common thread in all of these efforts is the study of paleomagnetism and rock magnetism, for which the Kirschvink group maintains laboratories dedicated to the study of weakly magnetic biological and geological materials.
Click to read more about The Grand Unified Theory of Biomineralization

Prof. Kirschvink delivered the Carl Sagan Memorial Lecture at the 2001 American Geophysical Union Fall meeting in San Francisco, a webcast of which is posted on the AGU www site. Click here for the current location of Asteriod 27711 Kirschvink, a member of the Phocaea family with an unusually high eccentricity, orbiting between Mars and Jupiter, with a magnitude of 15, about 3 km in diameter.

Joe is also the real Iron Man!. Additional contributions include various studies in rock- and paleomagnetism and Biomagnetism, and those from recent or current students: Prof. Robert Ripperdan, Prof. David A. Evans, Dr. John Holt, Prof. Benjamin Weiss, Prof. Robert Kopp.

Joe won the Richard P. Feynman Prize for teaching excellence at Caltech, and the William Gilbert Award from the American Geophysical Union!!


The Caltech Paleomagnetics Laboratory has two 2G Enterprises pass-through SQuID magnetometers (one retrofitted from a two-axis Superconducting Technology, Inc.) to measure three-axis magnetic moments with background noise sensitivity of 10-12 Am2 per axis. Currently, both magnetometers are operating in vertical mode, but one can swivel to operate in either horizontal or vertical mode. Both magnetometers have an RAPID automatic sample changer that can hold between 100-120 samples and can measure ~1 sample per minute including axis rotations (5 measurements total, Kirschvink et al. 2008). One is a snake-chain model, the other is the newer xy table model both designed by Professor Kirschvink. The quartz sample holder systems on both instruments reduce holder noise to 10-10 emu levels allowing measurement of weakly magnetized samples. These magnetometers are housed in two separate shielded rooms: 1) a 8 m3 two-layer mu-metal shield with residual fields ranging from 100 to less than 5 nT and 2) a 9 m x 3 m x 3 m room Gary Scott room made with transformer steel with residual magnetic fields of < 200 mT. Within each shielded room is a magnetically shielded ASC furnace, permitting up to 100 paleomagnetic specimens to be thermally demagnetized at once with a cycle time of > 1 hour using automated controlling software with optional controlled nitrogen atmosphere to prevent oxidation during heating.

The larger shielded room in Caltech’s Paleomagnetics Laboratory also houses an Ultra-High Resolution Scanning SQuID Microscope, developed in the Kirschvink Laboratory, can map the vertical component of the magnetic field above room temperature samples using an automated xy nanostage. Housed in an additional 4 layers of mu-metal shields, it has a sensitivity of 10-16 Am2 and a spatial resolution down to 40 μm. Although utilized for rock magnetic applications as well, through software and procedures developed with collaborators at MIT and Harvard, the magnetic moment can be calculated from very weak magnetic samples to address paleomagnetic questions.

Both of the 2G Enterprises SQuID magnetometers have an integrated in-line computer-controlled pulse magnetizer, an ARM acquisition system, and the 2G/Applied Physics alternating field demagnetization unit. The total setup thereby allows fully automated rock magnetic measurements to be made such as AF demagnetization, IRM acquisition and demagnetization (AF), ARM acquisition and demagnetization, rotational remanent magnetization (RRM) and demagnetization, and backfield IRM acquisition and demagnetization. User inputs for number of steps can change sample measurement time, but a complete IRM acquisition and AF demagnetization cycle of 30 measurements takes ~30 minutes. Plotting and analysis of rock magnetic experiments is performed using the RAPID MatlabTM scripts. In-line susceptibility bridges also allow susceptibility measurements to be made on each sample run using the magnetometers. For more detailed susceptibility measurements, the laboratory has an AGICO MFK1-FA KappaBridge with rotator, cryostat and furnace attachments for partially automated measurements of anisotropy of magnetic susceptibility and fully automated low-temperature and high-temperature susceptibility measurements. Other supplies and equipment in Professor Kirschvink's paleomagnetics lab include liquid nitrogen for low-temperature cycling, hall probes, portable fluxgates, and pass-through susceptibility bridges.

The 9m x 3m x 3m shielded room is an epoxy-sealed dust and particle-free clean laboratory maintained under positive pressure with a deionized water shower entryway and includes distilled-water sink. This allows magnetic measurements of weak biological samples on the 2G SQuID magnetometer as well as the Ultra-High Resolution Scanning SQuID Microscope. The laboratory also has a fume hood and an optical microscope to help biological analyses and experiments. Recent study of human magnetoreception has been done in a separate 8 m3 metal room with built-in coils to produce directed magnetic fields through automated software protocols.

The controlling hardware and software for the 2G SQuID magnetometer is currently being upgraded to improve the system's performance, flexibility, and user interface. The next generation of controlling software will be moved from Visual Basic to C#. Work is being done on the hardware and software of the magnetically shielded ASC furnace to add additional thermocouples for extra precision in thermal measurements. Lastly, the lab has experimented in using gallium in the cryocooler system of the 2G SQuID magnetometers to allow more efficient cooling and reduce liquid helium consumption (e.g. Kirschvink, GP13A-1380 abstract, AGU Fall Meeting 2015).



Peer-Reviewed Publications & Books, 1991+: Google scholar lists the most popular articles, and citation stats.

Nr Publication
1 2016c. Kobayashi, A., Golash, H.N., and J.L. Kirschvink, A First Test of the Hypothesis of Biogenic Magnetite-Based Heterogeneous Ice-Crystal Nucleation in Cryopreservation. Cryobiology Vol. 72, 216-224. doi:10.1016/j.cryobiol.2016.04.003
2 2016b. Slotznick, S.P., Winston, D., Webb, S.W., Kirschvink, J.L., and Fischer, W.W. Iron mineralogy and redox conditions during deposition of the mid-Proterozoic Appekunny Formation, Belt Supergroup, Glacier National Park. in: MacLean, J.S., and Sears, J.W., eds., Belt Basin: Window to Mesoproterozoic Earth: Geological Society of America Special Paper 522, p. , doi:10.1130/2016.2522(09).
3 2016a. Ward, L.M., J.L. Kirschvink, & W.W. Fischer. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis. Origins of Life and Evolution of Biospheres, March 2016, Volume 46 (1), pp 51-65. DOI 10.1007/s11084-015-9460-3
4 2015g. Ross N. Mitchell, Timothy D. Raub, Samuel C. Silva, & Joseph L. Kirschvink. Was the Cambrian explosion both an effect and an artifact of true polar wander? American J. Science, Vol. 315, December, 2015, P. 945-957, DOI 10.2475/10.2015.02
5 2015f. Benjamin P. Weiss, Adam C. Maloof, Nicholas Tailby, Jahandar Ramezani, Roger R. Fu, Veronica Hanus, Dustin Trail, E. Bruce Watson, T. Mark Harrison, Samuel A. Bowring, Joseph L. Kirschvink, Nicholas L. Swanson-Hysell, & Robert S. Coe, Pervasive Remagnetization of Detrital Zircon Host Rocks in the Jack Hills, Western Australia and Implications for Records of the Early Geodynamo. Earth and Planetary Science Letters, 430, 115-128 (DOI.org/10.1016/j.epsl.2015.07.067).
6 2015e. Sarah P. Slotznick, Jerry Zieg, Samuel M. Webb, Joseph L. Kirschvink, and Woodward W. Fischer, Iron Mineralogy and Redox Chemistry of the Mesoproterozoic Newland Formation in the Helena Embayment, Belt Supergroup, Montana. Northwest Geology, v. 44, 2015, p. 55-72 (2015).
7 2015d. Kirschivnk, J.L., The Accidental Discovery of a Chemotactic Override on the Swimming Direction of Magnetotactic Bacteria (an Amusing Story). Japan Geoscience Letters v. 11, special, (2015).
8 2015c. Jeroen Hansma, Eric Tohver, Maodu Yan, Kate Trinajstic, Brett Roelofs, Sarah Peek, Sarah P. Slotznick, Joseph L. Kirschvink, Ted Playton, Peter Haines, & Roger Hocking. Late Devonian carbonate magnetostratigraphy from the Oscar and Horse Spring Ranges, Lennard Shelf, Canning Basin, Western Australia. Earth and Planetary Science Letters 409 (2015) 232-242. Supplemental data here.
9 2015b. Kirschvink, J.L., Yukio Isozaki, Hideotoshi Shibuya, Yo-ichiro Otofuji, Timothy D. Raub, Isaac A. Hilburn, Teruhisa Kasuya, Masahiko Yokoyama, & Magali Bonifacie. Challenging the sensitivity limits of Paleomagnetism: Magnetostratigraphy of weakly magnetized Guadalupian-Lopingian (Permian) Limestone from Kyushu, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 418 (2015) 75-89. Stats spreadsheet here.
10 2015a. Ward, P.D. and Kirschvink, J.L. A New History of Life: The radical new discoveries about the origins and evolution of life on Earth. Bloomsbury Press, N.Y. (391 pp). ISBN: 9781608199075
11 2014b. Kirschvink, J.L. Sensory Biology: Radiowaves zap the biomagnetic compass. Nature (2014), doi:10.1038/nature13334, published online 07 May 2014.
12 2014a. Fisher, W.W., Fike, D.A., Johnson, J.E., Raub, T.D., Guan, Y., Kirschvink, J.L., Eiler, J.M. SQUID-SIMS, a useful approach to uncover primary signals in the Archean sulfur cycle Proc. Natl. Acad. Sciences 111(15), 5468-5473 www.pnas.org/cgi/doi/10.1073/pnas.1322577111. See also: A new Tool for unscrambling the rock record.
13 2013c Kobayashi, A. & J.L. Kirschvink. A ferromagnetic model for the action of electric and magnetic fields in cryopreservation. Cryobiology 68(2) 163-165.
14 2013b Johnson, J.E., Webb, S.M., Thomas, K., Ono, S., Kirschvink, J.L., Woodward W. Fischer, W.W. Correcting mistaken views of sedimentary geology, Mn-oxidation rates, and molecular clocks. Proc. Natl. Acad. Sciences 110 (44), E4119-E4120, DOI: 10.1073/pnas.1315376110.
15 2013a Johnson, J.E., Webb, S.M., Thomas, K., Ono, S., Kirschvink, J.L., Woodward W. Fischer, W.W. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Natl. Acad. Sciences 110 (28), pp11238-11243 DOI: 10.1073/pnas.1305530110.
16 2012e Kasting, J. and J. L. Kirschvink. Ch. 6: Evolution of a Habitable Planet. In: Frontiers of Astrobiology. C. Impey, J. Lunine and J. Funes (eds). Cambridge, UK, Cambridge University Press: pp. 115-131.
17 2012d Eder, S.K., Herve Cadiou, Airina Muhamad, Peter A. McNaughton, Joseph L. Kirschvink, & Michael Winklhofer. Magnetic Characterization of isolated candidate vertebrate magnetoreceptor cells. Proc. Nat. Acad.Sci. 2012; 109:12022-12027.
18 2012c Tobin, Thomas S., Peter D. Ward, Joseph L. Kirschvink, Eric J. Steig, Eduardo Olivero, Isaac Hilburn, Ross Mitchell, Matthew Diamond, & Timothy D. Raub. Association of Deccan Flood Volcanism, Climate, and Extinction at High Southern Latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, V350-352,pp, 180-188, 15 September 2012.
19 2012b Swanson-Hysell, N-L., Adam C. Maloof, J. L. Kirschvink, David A. D. Evans, Galen P. Halverson, & Matthew T. Hurtgen. Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia. American J. Science, 312:817-884, 2012.
20 2012a Peter D. Ward, James W. Haggart, Ross Mitchell, Joseph Kirschvink, & Thomas Tobin. Integration of macrofossil biostratigraphy and magnetostratigraphy for the Pacific Coast Upper Cretaceous (Santonian - Maastrichtian) of North America and implications for correlation with the Western Interior and Tethys. GSA Bulletin; May/June 2012; v. 124; no. 5/6; p. 957-974; doi: 10.1130/B30077.1
21 2011b Soon Sam Kim, John R. Bargar, Kenneth H. Nealson, Beverly E. Flood, Joseph L. Kirschvink, Timothy Raub, Bradley M. Tebo, & Mario Villalobos, Searching for Biosignatures using Electron Paramagnetic Resonance (EPR) Analysis of Manganese Oxides. Astrobiology, 11 (8), 775-786.
22 2011a Yasuhito Sekine, Eiichi Tajika, Ryuji Tada, Takemaru Hirai, Kosuke T. Goto, Tatsu Kuwatani, Kazuhisa Goto, Shinji Yamamoto, Shogo Tachibana, Yukio Isozaki, & Joseph L. Kirschvink, Manganese enrichment in the Gowganda Formation of the Huronian Supergroup: a highly oxidizing shallow-marine environment after the last Huronian glaciation. Earth and Planetary Science Letters 307 (2011) 201-210.
23 2010c Yasuhito Sekine, Eiichi Tajika, Naohiko Ohkouchi, Nanako O. Ogawa, Kazuisa Goto, Ryuji Tada, Shinji Yamamoto, & Joseph L. Kirschvink, Anomalous negative excursion of carbon isotope in organic carbon after the last Paleoproterozoic glaciation in North America. Geochem. Geophys. Geosyst. 11, Q08019, doi:10.1029/2010GC003210 (2010).
24 2010b Winklhofer, M. & Kirschvink, J.L., A quantitative assessment of magnetite-based torque Transducers. J. R. Soc. Interface (2010) 00, 1-17 doi:10.1098/rsif.2009.0435.focus, Published online 20 January 2010.
25 2010a Kirschvink, J.L., Winklhofer, M. & Walker, M.M. Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J. R. Soc. Interface v. 7, S179-S191 (2010) doi: 10.1098/rsif.2009.0491.focus , Published online 14 January 2010.
26 2009c Haggart, J.W., Ward, P.D., Raub, T.D., Carter, E.S. and Kirschvink, J.L. Molluscan biostratigraphy and paleomagnetism of Campanian strata, Queen Charlotte Islands, British Columbia: implications for Pacific coast North America biochronology. Cretaceous Research, v. 30, pp. 939-951.
27 2009b King-Fai Li, Kaveh Pahlevan, Joseph L. Kirschvink, Yuk L. Yung. Atmospheric Pressure as a Natural Regulator of the Climate of a Terrestrial Planet with Biosphere. Proc. Natl. Acad. Sci. 106 (24), 9576-9579, 2009.
28 Related story: Caltech Scientists Predict Greater Longevity for Planets with Life
29 2009a De Kock, M.O., Evans, D.A.D., Kirschvink, J.L., Beukes, N.J., Rose, E., and Hilburn, I. Paleomagnetism of a Neoarchean-Paleoproterozoic carbonate ramp and carbonate platform succession (Transvaal Supergroup) from surface outcrop and drill core, Griqualand West region, South Africa. Precambrian Research, v.269, p. 80-99.
30 2008g Schumann, D., Raub, T.D., Kopp, R.E., Leucken, U, Guerquin-Kern, J-L., Wu, T.D., Rouiller, I., Kirschvink, J.L., Smirnov, A.V., Sears, S.K., Hesse, R., & H. Vali, Gigantism in Unusual Biogenic Magnetite at the Paleocene-Eocene Thermal Maximum . Proc. Natl. Acad. Sci. 105:17648-17653, 2008. www.pnas.org_cgi_doi_10.1073_pnas.0803634105. The TEM Death-Star movie is here.
31 Related story: Caltech Geobiologists Discover Unique "Magnetic Death Star" Fossil
32 2008f Parkinson, C.D, Liang, M-C., Yung, Y.L., Kirschivnk, J.L. Habitability of Enceladus: Planetary Conditions for Life. Orig Life Evol Biosph. doi: 10.1007/s11084-008-9135-4
33 2008e Kirschvink, J.L. & Kopp, R.E., Paleoproterozic Icehouses and the Evolution of Oxygen Mediating Enzymes: The Case for a Late Origin of Photosystem-II Phil. Trans. Royal Soc. Lond., Ser. B. (2008) 363, 2755-2765, doi:10.1098/rstb.2008.0024.
34 2008d Kirschvink, J.L., Kopp, R.E., Raub, T.D., Baumgartner, C.T. and J. W. Holt. Rapid, precise, and high-sensitivity acquisition of paleomagnetic and rock-magnetic data: Development of a low-noise automatic sample changing system for superconducting rock magnetometers. Geochem. Geophys. Geosyst. 9, Q05Y01, doi: 10.1029/2007GC001856.
35 2008c Raub, T.D. and Kirschvink, J.L. A Pan-Precambrian Link Between Deglaciation and Environmental Oxidation. In: Antarctica: A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. (Eds., A.K. Cooper, P.J. Barrett, B. Stagg, B. Storey, E. Stump, W. Wise, and the 10th ISAES editorial team). National Academies Press, Washington, D.C., USA, pp. 83-90.
36 2008b Holland, R.A., Kirschvink, J.L., Doak, T.G., and M. Wikelski. Bats use magnetite to detect the Earth's magnetic field. PLoS ONE 3(2): e1676. doi: 10.1371/journal.pone.0001676
37 2008a Kopp, R.E. and J. L. Kirschvink (2008). The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Sci. Rev. 86: 42-61. doi:10.1016/j.earscirev.2007.08.001
38 2007e Kopp R.E., T. D. Raub, D. Schumann, H. Vali, A. V. Smirnov, J. L. Kirschvink (2007), Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock magnetic, and electron microscopy evidence from Ancora, New Jersey, United States. Paleoceanography, 22, PA4103, doi:10.1029/2007PA001473.
39 2007d Raub, T.D., Kirschvink, J.L., and D. A. D. Evans. True Polar Wander: Linking Deep and Shallow Geodynamics to Hydro- and Bio-spheric Hypotheses. Treatise on Geophysics, V. 5, Ch. 14, pages 565-589.
40 2007c Maloof, A. C., Kopp, R. E., Grotzinger, J. P., Fike, D. A., Bosak, T., Vali, H., Poussart, P. M., Weiss, B. P., and J. L. Kirschvink, Sedimentary Iron Cycling and the Origin and Preservation of Magnetization in Platform Carbonate Muds, Andros Island, the Bahamas. Earth and Planetary Science Letters 259 (2007) 581-598.
41 2007b Walker, M.M., Diebel, C.E. & Kirschvink, J.L., Chapter 8: Magnetoreception. In: Toshiaki Hara and Barbara Zielinski (eds.), Sensory Systems Neuroscience: Fish Physiology, v. 25, Elsevier Inc, pp. 335-374.
42 2007a Parkinson, C. D., Liang, M-C., Hartman, H., Hansen, C. J., Tinetti, G., Meadows, V., Kirschvink, J. L., and Yung, Y. L., Enceladus: Cassini Observations and Implications for the Search for Life (ResearchNote). Astronomy & Astrophysics, 463, 353-357.
43 2006f Mao-Chang Liang, Hyman Hartman, Robert E. Kopp, Joseph L. Kirschvink and Yuk L. Yung. Production of Hydrogen Peroxide in the Atmosphere of a Snowball Earth and the Origin of Oxygenic Photosynthesis. Proc. Natl. Acad. Sci. 103: 18896-18899.
44 Related story: Geobiologists Solve "Catch-22 Problem" Concerning the Rise of Atmospheric Oxygen
45 2006e Kopp, R.E., Nash C.Z., Kobayashi, A., Weiss, B.P., Bazylinski, D.A., and J.L. Kirschvink, Ferromagnetic resonance spectroscopy for assessment of magnetic anisotropy and magnetostatic interactions: a case study of mutant magnetotactic bacteria, J. Geophys. Res., 111, B12S25, doi:10.1029/2006JB004529.
46 2006d Maloof, A.C., Halverson, G.P., Kirschvink, J.L., Schrag, D.P., Weiss, B.P., and Hoffman, P.F., Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Geological Society of America Bulletin, v. 118, no. 9/10, p. 1099-1124.
47 2006c Kopp, R.E., Weiss, B.P., Maloof, A.C., Vali H., Nash, C.Z. & Kirschvink, J.L., Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy, Earth & Planetary Science Letters 247: 10 - 25.
48 2006b Kobayashi, A., Kirschvink, J.L., Nash, C. Z., Kopp, R. E., Sauer, D.A., Bertani, L.E., Voorhout, W.F., and Taguchi, T., Experimental Observation of Magnetosome Chain Collapse in Magnetotactic Bacteria: Sedimentological, paleomagnetic, and evolutionary implications, Earth & Planetary Science Letters 245, 538-550.
49 2006a Suzuki, Y., Kopp, R.E., Kogure, T., Suga, A., Takai, K., Tsuchida, S., Ozaki, N., Endo, K., Hashimoto, J., Kato, Y., Mizota, C., Hirata, T., Chiba, H., Nealson, K.H., Horikoshi, K., & Kirschvink, J.L., Sclerite formation in the hydrothermal-vent 'scaly-foot' gastropod - possible control of iron sulfide biomineralization by the animal, Earth & Planetary Science Letters 242, 39-50.
50 2005c Kopp, R.E., Kirschvink, J.L., Hilburn, I.A. & Nash, C.Z., Was the Paleoproterozoic Snowball Earth a biologically-triggered climate disaster?, Proc. Natl. Acad. Sci. 102: 11131-11136.
51 Related story: Red Earth, White Earth, Green Earth, Black Earth, Engineering & Science 2005, No. 4, P. 10-20.
52 2005b Hilburn, I.A., Kirschvink, J.L., Tajika, E., Tada, R., Hamano, Y., and Yamamoto, S., A negative fold test on the Lorrain Formation of the Huronian Supergroup: Uncertainty on the paleolatitude of the Paleoproterozoic Gowganda glaciation and implications for the great oxygenation event, Earth & Planetary Science Letters 232, 315-332.
53 2005a Ward, P.D., Garrison G., Botha J., Buick R., Erwin D.H., Kirschvink J.L., De Kock M.O., and R. Smith. Abrupt and Gradual Extinction among Land Vertebrates in the Karoo Basin, South Africa, Science, v. 307, 709-714.
54 2004d Vali, H., Weiss, B.P., Yiliang Li, Y., Sears, S.K., Kim, S-S., Kirschvink, J.L., and Zhang C.L. Formation of tabular single domain magnetite induced by Geobacter metallireducens GS-15, Proc. Nati. Acad. Sci. 101, 16121-16126.
55 2004c Weiss, B.P., Kim,S., Kirschvink, J.L., Kopp, R.E., Sankaran M., Kobayashi, A., & Komeili, A. Ferromagnetic resonance and low temperature magnetic tests for biogenic magnetite, Earth & Planetary Science Letters 224, 73-89.
56 2004b Weiss, B.P., Kim, S., Kirschvink, J.L., Kopp, R.E., Sankaran, M. Kobayashi A. & Komelil A. Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proc. Nati. Acad. Sci. 101, 8281-8284.
57 2004a De Kock, M.O. & Kirschvink, J.L.: Paleomagnetic constraints on the Permian-Triassic boundary in terrestrial strata of the Karoo Supergroup, South Africa: Implications for causes of the end-Permian extinction event. Gondwana Research, 7: 175-183.
58 2003c Kirschvink, J.L.: Heinz A.Lowenstam 1912-1993: A biographical Memoir. Biographical Memoirs, VOLUME 83, The National Academy Press, Washington, D.C.
59 2003b Walker, M.M., Diebel, C.E., & J.L. Kirschvink: Detection and Use of the Earth�s Magnetic Field by Aquatic Vertebrates. In: Sensory Processing in Aquatic Environments, (S. P. Collin & N. J. Marshall, eds.), Springer-Verlag, New York, pp. 53-74.
60 2003a Kirschvink, J.L. & Raub, T.D.: A Methane Fuse for the Cambrian Explosion: Carbon Cycles and True Polar Wander. Comptes Rendus Geosciences, .,v.335, 65-78.
61 2002k Kirschvink, J. L., Iron Biominerals as Biomarkers, in: Signs of Life: A Report Based on the April 2000 Workshop on Life Detection Techniques: Washington, D.C., The National Academies Press, p. 123-146.
62 2002j Thackeray, J.F., Kirschvink, J.L., and Raub, T.D.: Palaeomagnetic analyses of calcified deposits from the Plio-Pleistocene hominid site of Kromdraai, South Africa. South African Journal of Science, 98: 537-540.
63 2002i Evans, D.A.D., Beukes, N.J., and Kirschvink, J.L.: Paleomagnetism of a lateritic paleo-weathering horizon and overlying Paleoproterozoic redbeds from South Africa: Implications for the Kaapvaal apparent polar wander path and a confirmation of atmospheric oxygen enrichment. J. Geophys. Res.,107(B12), 2326, doi:10.1029/2001JB000432.
64 2002h Phillips J.B., Borland, S.C., Freake M.J., Brassart J., and Kirschvink, J.L.: Fixed-axis� magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J. Exptl. Biol.,205: 3903-3914.
65 2002g Walker, M.M., Dennis, T.E., and Kirschvink, J.L.: The magnetic sense and its use in long-distance navigation by animals. Current Opinion in Neurobiology,12: 735-744.
66 2002f Clemett, S.J., Thomas-Keprta,K.L., Shimmin,J., Morphew,M., J. R. Mcintosh, D. A. Bazylinski, J. L. Kirschvink, S.J. Wentworth, D.S. McKay, H. Vali, E.K. Gibson JR., & C.S. Romanek: Crystal morphology of MV-1 magnetite. American Mineralogist,87: 1727-1730.
67 2002e Wiltschko, W., U. Munro, R. Wiltschko & J. Kirschvink: Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behavior. J. Exp. Biol. 205: 3031-3037.
68 2002d Weiss, B.P., Vali, H., Baudenbacher, F.J., Kirschvink, J.L., Stewart S.T., and Shuster, D.L.: Records of an ancient Martian magnetic field in ALH84001. Earth & Planetary Science Letters 201, 449-463. Also see the Weiss et al. companion paper.
69 2002c Kathie L. Thomas-Keprta, Simon J. Clemett, Dennis J. Bazylinski, Joseph L. Kirschvink, David S. McKay, Susan J. Wentworth, Hojatollah Vali, Everett K. Gibson, & Christopher S. Romanek. Magnetofossils from Ancient Mars: A Robust Biosignature in the Martian Meteorite ALH84001. Applied and Environmental Microbiology 68(8), 3663-3672.
70 2002b Kirschvink, J.L., Quand tous les oc�ans �taient gel�s. [When all of the oceans were frozen]. , La Recherche v. 355 (Julliet-Ao�t 2002), pp. 26-30.
71 2002a Kirschvink, J.L., Weiss, B.P. Mars, Panspermia, and theOrigin of life: Where did it all begin? Palaeolontogia Electronica, v.4 (2), 8-15.; PDF here, Japanese translation by Yukio Isozaki was published in Journal of Geography v. 112(2), 187-196, 2003.
72 2001e Weiss, B.P., Wikswo, J.P., Baudenbacher, F.J., Kirschvink, J.L. The Next Step: SQUID Microscopy. EOS - Trans. Am. Geophys. Union, EOS, v82, n44, pp. 513 & 518.
73 2001d Kirschvink, J.L., Walker, M.M. Deibel, C. Magnetite-based Magnetoreception. Current Opinion in Neurobiology, 11, 462-467.
74 2001c Evans,D.A.D., Gutzmer, J., Beukes, N.J., and Kirschvink,J.L. Paleomagnetic constraints on ages of mineralization in the Kalahari manganese field, South AfricaEconomic Geology, 96: 621-631.
75 2001b Bertani,E.L., Juliani Weko, Khristie V. Phillips, Rachel F. Gray and Joseph L. Kirschvink, Physical and genetic characterization of the genome of Magnetospirillum magnetotacticum, strain MS-1, Gene (264) 2 (2001) pp. 257-263.
76 2001a Thomas-Keptra, K. L. , Clemett, S.J., Bazylinski, D.A., Kirschvink,J.L., McKay, D.S., Wentworth S.J., Vali, H., Gibson, E.K. Jr., McKay, M.F., and Romanek, C.S. Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures. Proceedings of the National Academy of Sciences (USA) , 98 (5): 2164-2169.
77 2000h Steyn, P.F., Ramey, D., Kirschvink J.L., & Uhrig, J. Effect of a static magnetic field on blood flow to the metacarpus in horses. J. American Veterinary Med. Assoc., 217 (7), 874-878.
78 2000g Thomas-Keptra K.L., Bazylinski D.A., Kirschvink J.L., Clemett S.J., McKay D.S., Wentworth S.J., Vali H., Gibson E.K., Jr., and Romanek,C.S. Elongated Prismatic Magnetite Crystals in ALH84001 Carbonate Globules: Potential Martian Magnetofossils. Geochimica Cosmochimica Acta 64 (23), 4049-4081.
79 2000f Weiss B.P., Kirschvink J.L., Baudenbacher F.J., Vali H., Peters N.T., Macdonald F.A., and J.P. Wikswo. A Low Temperature Transfer of ALH84001 from Mars to Earth. Science, 290, no. 5492, 791-795.
80 Related stories: New results on Martian meteorite support hypothesis that life can jump between planets
Martians Landing on Earth?
If You Mean Bacteria, Maybe
81 2000e Kirschvink J.L. & Hagadorn, J.W. 10: A Grand Unified theory of Biomineralization. in Bäuerlein, E., ed., The Biomineralisation of Nano- and Micro-Structures, Wiley-VCH Verlag GmbH, Weinheim, Germany, pp. 139-149.
82 2000d Kirschvink, J.L. Title suppressed to avoid www browsers. Bulletin Seismological. Soc. Am. 90 (2), 312-323.
83 2000c M.W. Martin, D.V. Grazhdankin, S.A. Bowring, D.A.D. Evans, M. A. Fedonkin, J.L. Kirschvink. Age of Neoproterozoic Bilatarian Body and Trace Fossils, White Sea, Russia: Implications for Metazona Evolution. Science 288: 841-845.
84 2000b Evans, D.A.D., Li, Z.X., Kirschvink, J.L, Wingate, M.T.D. A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages, regional stratigraphy, and the breakup configuration of Rodinia. Precambrian Research 100: (1-3) 313-334, 2000.
85 2000a Kirschvink, J.L., Gaidos, E.J., Bertani, L.E., Beukes, N.J., Gutzmer, J., Maepa, L.N., and Steinberger, R.E., Paleoproterozoic Snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sciences 97(4): 1400-1405.
86 Related story: Snowball Earth Episode 2.4 Billion Years Ago was Hard on
Life, but Good for Modern Industrial Economy, Research Shows
87 1999d Riley, C.M. Diehl, J.F., Kirschvink, J.L., Ripperdan, R.L. Paleomagnetic constraints on fault motion in the Hilina Fault System, south flank of Kilauea Volcano, Hawaii. J. Volcanology Geothermal Res. 94: (1-4)233-249 (DEC 30) 1999.
88 1999c Brassart, J., Kirschvink, J.L., Philips, J.B. & Borland, S.C., Ferromagnetic material in the Eastern red-spotted newt, Notophthalmus viridescens. J. Exptl. Biol. 202: (22) 3155-3160.
89 1999b Gaidos, E.J., Nealson, K.H., & Kirschvink, J.L., Life in Ice-Covered Oceans. Science 284: 1631-1633.
90 Related stories: Lack of energy makes life on Europa unlikely,
Caltech study concludes
Astrobiologists should look for both water and
energy sources when searching for life on other
worlds,researcher says
91 1999a Mound, J.E., Mitrovica, J.X., Evans, D.A., & J.L. Kirschvink. Sea-level response due to Inertial Interchange True Polar Wander and a test of the Proposed Early Cambrian Event. Geophysical Journal International 136:F5-F10.
92 1998b Kirschvink, J.L., Brassart, J., and Nesson, M.H. Magnetite-based biological effects in animals. Electrical Power Research Institute Technical Report TR-111901 (Palo Alto, CA), 122 pp.
93 1998a Evans, D.A., Ripperdan, R.L., and Kirschvink, J.L. Polar Wander and the Cambrian. Science, 279: 9a-9e.
94 1997i Courtillot, V., Hulot, G., Alexandrescu, M., le Mouël, J-L., and Kirschvink, J.L. Sensitivity and Evolution of Sea-Turtle Magnetoreception: A Discussion of Observations, Modeling and Constraints from Geomagnetic Secular Variation. Terra Nova, 9 (5/6), 203-207.
95 1997h Kirschvink, J.L. Magnetoreception: Homing in on Vertebrates. Nature 390 (6658): 339-340.
96 1997g Bertani, L.E., Huang, J., Weir, B. & J.L. Kirschvink. Evidence for two types of subunits in the bacterioferritin of Magnetospirillum magnetotacticum. Gene 201:31-36.
97 1997f Ward, P D., Hurtado, J.H., Kirschvink, J.L., Verosub, K.L. New constraints on the Cretaceous paleolatitude of Vancouver Island are consistent with the Baja-British Columbia Hypothesis. Science, 277: 1642-1645.
98 1997e. Kirschvink, J.L., Ripperdan, R.L., Evans, D. A. Evidence for a large-scale Early Cambrian reorganization of continental masses by inertial interchange true polar wander. Science 227: 541-545.
99 1997d. Kobayashi, A.K., Yamamoto, N., & J.L. Kirschvink. Studies of inorganic crystals in biological tissue magnetite in human tumors. J. Japanese Society of Powder and Powder metallurgy 44, 294-300.
100 1997c. Kirschvink, J.L., Padmanabha, S., Boyce, C.K., and Oglesby, J.,. Measurement of the threshold sensitivity of honeybees to weak, extremely low frequency magnetic fields. J. Exp. Biol. 200, 1363-1368.
101 1997b. Evans, D.A., Beukes, N.J., & Kirschvink, J.L.,. Low-latitude glaciation in the Paleoproterozoic. Nature 386 (6622): 2626-266.
102 Related story: Caltech Scientists Find Evidence For Massive
IceAge When Earth Was 2.4 billion Years Old
103 1997a. Kirschvink, J.L., Maine, A.T., and Vali, H. Paleomagnetic evidence supports a low-temperature origin of carbonate in the Martian meteorite ALH84001. Science 275: 1629-1633.
104 Related story: Caltech Geologists Find New Evidence That
Martian Meteorite Could Have Harbored Life
105 1996c. Evans, D.A., Zhuravlev, A. Yu., Budney, C.J., & Kirschvink, J.L., Paleomagnetism of the Bayan Gol Formation, western Mongolia. Geological Magazine, 133: 478-496.
106 1996d. Kobayashi, A.K., Yamamoto, N. & J.L. Kirschvink. Study of Inorganic crystalline solids in biosystems - Magnetite in the human body. (in Japanese). J. Japan Society of Powder and Powder Metallurgy 43, 1354-1360. 
107 1996b. Holt, J. W., Kirschvink, J.L., & F. Garnier, Geomagnetic field inclinations for the past 400 kyr from the 1 km core of the Hawaii Scientific Drilling Project, J. Geophys. Res. 101 (B5), 11, 655-11,663.
108 1996a. Kirschvink. J. L. "Microwave Absorption by Magnetite: A possible mechanism for coupling nonthermal levels of radiation to biological systems", Bioelectromagnetics, 17: 187-194.
109 1995d. Kobayashi, A. & J.L. Kirschvink. "Magnetoreception and EMF Effects: Sensory perception of the geomagnetic field in Animals & Humans." in: M. Blank, Ed., Electromagnetic Fields: Biological Interactions and Mechanisms. American Chemical Society Books, Washington, DC., pp. 367-394.
110 1995c. Kirschvink, J.L. & Walker, M.M., "Magnetorecpetion in honeybees." Science, 269:1889-1889.
111 1995b. Holt, J.W., & J.L. Kirschvink. "The Upper Olduvai Geomagnetic Reversal from Death Valley, California: A fold test of transitional Directions." Earth & Planetary Sciences Letters 133: 475-491.
112 1995a. Kobayashi, A.K., J.L. Kirschvink, & Nesson, M.H.,. "Ferromagnets and EMFs." Nature, 374: 123-123.
113 Related story: Article Questions Validity of Research on
Biological Effects of Electromagnetic Fields
114 1994a. Kirschvink. J. L. "Rock Magnetism Linked to Human Brain Magnetite", EOS - Trans. Am. Geophys. Union, EOS, v75, n15, pp. 178-179.
115 1993c J.L. Kirschvink, J. Diaz-Ricci, M.H. Nesson, and S. J. Kirschvink, "Magnetite-based Magnetoreceptors: Ultrastructural, Behavioral, and Biophysical Studies." Electric Power Research Institute (EPRI), Palo Alto, California, USA, technical report TR102008.
116 1993b Ripperdan, R.L., Magaritz, M., & J.L. Kirschvink, "Magnetic polarity and carbon isotope evidence for non-depositional events within the Cambrian-Ordovician boundary section near Dayangcha, Jilin Province, China. Geological Magazine 130:(4): 443-452.
117 1993a McNeill, D.F., & J.L. Kirschvink. " "Early dolomitization of platform carbonates and the preservation of magnetic polarity.," J. Geophys. Res. 98(B5), 7977-7986.
118 1992o Kirschvink, J.L., Kobayashi-Kirschvink, A., Diaz-Ricci, J., & S.J. Kirschvink, "Magnetite in human tissues: A mechanism for the biological effects of weak ELF magnetic fields". Bioelectromagnetics Supplement 1:, 101-114.
119 1992n Walker, M.M., Kirschvink, J.L., Dizon, A.E. and Ahmed, G., " "Evidence that fin whales respond to the geomagnetic field during migration,"J. Exptl. Biol. 171: 67-78. 
120 1992m Diaz-Ricci J.C. and J.L. Kirschvink, " "Magnetic domain state and coercivity predictions for biogenic greigite (Fe3O4): A comparison of theory with magnetosome observations.," J. Geophys. Res. 97(B12): 17309-17315.
121 1992l Kirschvink J.L. Uniform magnetic fields and Double-wrapped coil systems: Improved techniques for the design of biomagentic experiments. Bioelectromagnetics 13:401-411.
122 1992k Kirschvink, J.L., Kobayashi-Kirschvink, A., and Woodford, B.J. Magnetite biomineralization in the human brain. Proceedings of the National Academy of Sciences, 89(16): 7683-7687.
123 1992j Salyards, S.L., Sieh K.E., and J.L. Kirschvink. "Paleomagnetic measurement of non-brittle coseismic deformation across the San Andreas Fault at Pallett Creek", J. Geophys. Res., 97:2457-2470.
124 1992i Ripperdan, R.L., and Kirschvink, J.L., 1992. Paleomagnetic results from the Cambrian-Ordovician boundary section at Black Mountain, western Queensland, Australia. in: Webby, B.D. & J.R. Laurie, eds., Global Perspectives on Ordovician Geology, A.A. Balkema, Rotterdam, pp. 93-g-103.
125 1992h Kirschvink, J.L., "Constraints on biological effects of weak extremely low-frequency electromagnetic fields: comment". Phys. Rev. A. 46(4), 2178-2184.
126 1992g Compston. W., Williams, W., Kirschvink J.L., Zhang Zichao & Ma Guogan. Zircon U-Pb ages for the Early Cambrian time scale. J. Geol. Soc. London 149: 171-184.
127 1992f Kirschvink, J.L., Kuwajima T., Ueno, S., Kirschvink, S. J., Diaz-Ricci, J.C., Morales, A., Barwig, S., and Quinn K. (1992). "Discrimination of low-frequency magnetic fields by honeybees: Biophysics and experimental tests". In: Sensory Transduction (eds. D.P. Corey & S.D. Roper), pp. 225-240. Society of General Physiologists, 45th Annual Symposium, Rockefeller University Press, New York.
128 1992e Kirschvink J.L., "On the magnetostatic control of crystal orientation and iron Accumulation in Magnetosomes". Automedica 14:257-269.
129 1992d Pluhar, C.J., Holt, J.H., Kirschvink,J.L., Beratan K., and R.W. Adams. 1992. Magnetostratigraphy of plio-pleistocene lake sediments in the Confidence Hills of Southern Death Valley, California. San Bernardino County Museum Association Quaterly v. 39(2), p. 12-19.
130 1992c Gomez, F., Hsieh, J., Holt, J., Murray, B., and J.L. Kirschvink, 1992. Outcrop geology of Plio-pleistocene strata of the confidence hills, southen Death Valley, California. San Bernardino County Museum Association Quaterly v. 39(2), p. 3-6.
131 1992b Kirschvink J.L. "Late Proterozoic Low-Latitude Global Glaciation: The Snowball Earth". Section 2.3 in: J.W. Schopf, C. Klein, & D. Des Maris (eds), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, pp. 51-52.
132 1992a Kirschvink J.L., "A Paleogeographic Model for Vendian and Cambrian Time". Chapter XII in: J.W. Schopf, C. Klein, & D. Des Maris (eds), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, pp 567-581.
133 1991g Diaz-Ricci, J.C., Woodford B.J., Kirschvink J.L. & M.R. Hoffman. Alteration of the magnetic properties of Aquaspirillum magnetotacticum by a pulse magnetization technique. Applied and Environmental Micorbiology 57: 3248-3254.
134 1991f Magaritz, M., Latham A., Kirschvink, J.L., Zhurevlev A. Yu., and Rozanov A. Yu. The Precambrian-Cambrian boundary problem: Carbon Isotope correlations for Vendian and Tommotian time between Siberia and Morocco, Geology 19:847-850.
135 1991e Aissaoui, D.M., & J.L. Kirschvink, Atoll magnetostratigraphy - calibration of the Eustatic records. Terra Nova 3(1): 35-40.
136 1991d Pluhar, C.J. & J.L. Kirschvink. Magnetostratigraphy and clockwise rotation of the Plio-Plsistocene Mojave River Formation, Central Mojave Desert, California. San Bernardino County Museum Association Quaterly v. 38(2), p. 31-42.
137 1991c Kirschvink, J. L., Magaritz, M., Ripperdan, R.L., Zhurevlev. Y.Yu. and A.Yu. Rozanov, The Precambrian-Cambrian boundary: Magnetostratigraphy and Carbon Isotopes resolve correlation problems between Siberia, Morocco, and South China. GSA Today, v. 1(4), 69-91.
138 1991b Kirschvink, J.L. and Kobayashi-Kirschvink, A. "Is geomagnetic sensitivity real? Replication of the Walker-Bitterman conditioning experiment in honey bees. American Zoologist v. 31(1): 169-185.
139 1991a Vali H., and J.L. Kirschvink. Observations of Magnetosome Organization, Surface Structure, and Iron Biomineralization of Undescribed Magnetic Bacteria: Evolutionary Speculations. In: R.P. Frankel & R.P. Blakemore(eds), Iron Biomineralization, Plenum Press, New York, pp. 97-115.


More about Caltech on campus maps.

Feel free to contact us.

icon 1 1200 E. California Blvd, Pasadena, CA 91125, USA

icon 2 pmag.contact@caltech.edu

icon 3www.caltech.edu

It's part of our evolutionary history.
Magnetoreception may be the primal sense.